000908053 001__ 908053
000908053 005__ 20240313103120.0
000908053 0247_ $$2doi$$a10.1088/2634-4386/ac55fc
000908053 0247_ $$2Handle$$a2128/31303
000908053 0247_ $$2altmetric$$aaltmetric:125537151
000908053 0247_ $$2WOS$$aWOS:001064089200001
000908053 037__ $$aFZJ-2022-02348
000908053 082__ $$a621.3
000908053 1001_ $$0P:(DE-Juel1)176776$$aKurth, Anno C$$b0$$eCorresponding author
000908053 245__ $$aSub-realtime simulation of a neuronal network of natural density
000908053 260__ $$aBristol$$bIOP Publishing Ltd.$$c2022
000908053 3367_ $$2DRIVER$$aarticle
000908053 3367_ $$2DataCite$$aOutput Types/Journal article
000908053 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655197237_19649
000908053 3367_ $$2BibTeX$$aARTICLE
000908053 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908053 3367_ $$00$$2EndNote$$aJournal Article
000908053 520__ $$aFull scale simulations of neuronal network models of the brain are challenging due to the high density of connections between neurons. This contribution reports run times shorter than the simulated span of biological time for a full scale model of the local cortical microcircuit with explicit representation of synapses on a recent conventional compute node. Realtime performance is relevant for robotics and closed-loop applications while sub-realtime is desirable for the study of learning and development in the brain, processes extending over hours and days of biological time.
000908053 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000908053 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x1
000908053 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000908053 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x3
000908053 536__ $$0G:(DE-HGF)SO-092$$aACA - Advanced Computing Architectures (SO-092)$$cSO-092$$x4
000908053 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908053 7001_ $$0P:(DE-Juel1)162130$$aSenk, Johanna$$b1
000908053 7001_ $$0P:(DE-Juel1)169778$$aTerhorst, Dennis$$b2
000908053 7001_ $$0P:(DE-Juel1)174496$$aFinnerty, Justin$$b3
000908053 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b4
000908053 770__ $$aFocus Issue on Energy Efficient Neuromorphic Devices, Systems and Algorithms
000908053 773__ $$0PERI:(DE-600)3099608-9$$a10.1088/2634-4386/ac55fc$$gVol. 2, no. 2, p. 021001 -$$n2$$p021001$$tNeuromorphic computing and engineering$$v2$$x2634-4386$$y2022
000908053 8564_ $$uhttps://juser.fz-juelich.de/record/908053/files/Kurth_2022_Neuromorph._Comput._Eng._2_021001.pdf$$yOpenAccess
000908053 909CO $$ooai:juser.fz-juelich.de:908053$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000908053 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176776$$aForschungszentrum Jülich$$b0$$kFZJ
000908053 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162130$$aForschungszentrum Jülich$$b1$$kFZJ
000908053 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169778$$aForschungszentrum Jülich$$b2$$kFZJ
000908053 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174496$$aForschungszentrum Jülich$$b3$$kFZJ
000908053 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b4$$kFZJ
000908053 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000908053 9141_ $$y2022
000908053 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908053 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908053 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-13T13:51:14Z
000908053 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-13T13:51:14Z
000908053 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double blind peer review, Open peer review$$d2021-10-13T13:51:14Z
000908053 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000908053 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000908053 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000908053 9801_ $$aFullTexts
000908053 980__ $$ajournal
000908053 980__ $$aVDB
000908053 980__ $$aUNRESTRICTED
000908053 980__ $$aI:(DE-Juel1)INM-6-20090406
000908053 980__ $$aI:(DE-Juel1)IAS-6-20130828
000908053 980__ $$aI:(DE-Juel1)INM-10-20170113
000908053 981__ $$aI:(DE-Juel1)IAS-6-20130828