001     908064
005     20250129094244.0
024 7 _ |a 10.1039/D2NR01625G
|2 doi
024 7 _ |a 2040-3364
|2 ISSN
024 7 _ |a 2040-3372
|2 ISSN
024 7 _ |a 2128/31443
|2 Handle
024 7 _ |a 35674291
|2 pmid
024 7 _ |a WOS:000807581900001
|2 WOS
037 _ _ |a FZJ-2022-02351
082 _ _ |a 600
100 1 _ |a Ji, Wenhai
|0 P:(DE-Juel1)167574
|b 0
245 _ _ |a Nanoparticle-induced morphological transformation in block copolymer-based nanocomposites
260 _ _ |a Cambridge
|c 2022
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1657112149_11875
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a By controlling the chemical composition and the spatial organization of nanoparticles, hybrid nanocomposites incorporating ordered arrangements of nanoparticles could be endowed with exotic physical and chemical properties to fulfill demands in advanced electronics or energy-harvesting devices. However, a simple method to fabricate hybrid nanocomposites with precise control of nanoparticle distribution is still challenging. We demonstrate that block copolymer-based nanocomposites containing well-ordered nanoparticles with various morphologies can be readily obtained by adjusting the nanoparticle concentration. Moreover, the structural evolution of nanocomposite thin films as a function of nanoparticle loading is unveiled using grazing-incidence transmission small-angle X-ray scattering and atomic force microscopy. The morphological transformation proceeds through a phase transition from perforated lamellae to in-plane cylinder layout, followed by structural changes. The successful achievement of a variety of morphologies represents an effective and straightforward approach to producing functional hybrid nanocomposites for potential applications in various functional devices.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Huang, Zhongyuan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kentzinger, Emmanuel
|0 P:(DE-Juel1)130754
|b 2
700 1 _ |a Rücker, Ulrich
|0 P:(DE-Juel1)130928
|b 3
700 1 _ |a Brückel, Thomas
|0 P:(DE-Juel1)130572
|b 4
700 1 _ |a Xiao, Yinguo
|0 P:(DE-Juel1)131047
|b 5
|e Corresponding author
773 _ _ |a 10.1039/D2NR01625G
|g p. 10.1039.D2NR01625G
|0 PERI:(DE-600)2515664-0
|n 24
|p 8766-8775
|t Nanoscale
|v 14
|y 2022
|x 2040-3364
856 4 _ |u https://juser.fz-juelich.de/record/908064/files/d2nr01625g.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/908064/files/manuscript.docx
909 C O |o oai:juser.fz-juelich.de:908064
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130754
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130572
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2022
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANOSCALE : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NANOSCALE : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-82)080009_20140620
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21