001     908065
005     20240711092241.0
024 7 _ |a 10.1007/s10853-022-07143-6
|2 doi
024 7 _ |a 0022-2461
|2 ISSN
024 7 _ |a 1573-4803
|2 ISSN
024 7 _ |a 2128/31279
|2 Handle
024 7 _ |a altmetric:126557766
|2 altmetric
024 7 _ |a WOS:000781719500001
|2 WOS
037 _ _ |a FZJ-2022-02352
082 _ _ |a 670
100 1 _ |a Gross, Jürgen Peter
|0 P:(DE-Juel1)177993
|b 0
|e Corresponding author
245 _ _ |a Strength Assessment of Al2O3 and MgAl2O4 Using Micro- and Macro-scale Biaxial Tests
260 _ _ |a Dordrecht [u.a.]
|c 2022
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1654852313_15269
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The application of ceramics in advanced functional applications often requires thicknesses below a few hundred micrometers, rendering an assessment of the materials’ strength particularly challenging. In this work, different testing methods are combined to elucidate the effect of the volume and the surface area of the specimens under tensile loading on the fracture strength of Alumina of different purities and Spinel. A ball-on-3-ball test has been implemented into a micro-indentation system permitting as novelty a high control and acquisition of loads and displacements to study the biaxial fracture stress of thin specimens. In addition, ring-on-ring tests are carried out for thicker specimens. Weibull statistics is applied to analyze the fracture stresses. Considering all individual data sets obtained using the two testing methods, the effective volume approach appears most suitable for the materials tested. This conclusion is confirmed by fractographic analysis, where pores could be identified as the main failure initiating defect. The combination of a micro-indentation system and a ball-on-3-ball test as micro-and macro-scale biaxial tests represents an easy, fast and reliable methodology to investigate small scale ceramic materials.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Malzbender, Jürgen
|0 P:(DE-Juel1)129755
|b 1
|u fzj
700 1 _ |a Schwaiger, Ruth
|0 P:(DE-Juel1)179598
|b 2
|u fzj
773 _ _ |a 10.1007/s10853-022-07143-6
|g Vol. 57, no. 15, p. 7481 - 7490
|0 PERI:(DE-600)2015305-3
|n 15
|p 7481 - 7490
|t Journal of materials science
|v 57
|y 2022
|x 0022-2461
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/908065/files/Gross2022_Article_StrengthAssessmentOfAl2O3AndMg.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/908065/files/Strength%20Assessment%20of%20Al2O3%20-%20Gross.pdf
909 C O |o oai:juser.fz-juelich.de:908065
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177993
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129755
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)179598
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER SCI : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-12
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21