Hauptseite > Publikationsdatenbank > Remote Sensing of Complex Permittivity and Penetration Depth of Soils Using P-Band SAR Polarimetry > print |
001 | 908081 | ||
005 | 20230123110626.0 | ||
024 | 7 | _ | |a 10.3390/rs14122755 |2 doi |
024 | 7 | _ | |a 2128/31358 |2 Handle |
024 | 7 | _ | |a altmetric:129440818 |2 altmetric |
024 | 7 | _ | |a WOS:000816142600001 |2 WOS |
037 | _ | _ | |a FZJ-2022-02360 |
082 | _ | _ | |a 620 |
100 | 1 | _ | |a Fluhrer, Anke |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Remote Sensing of Complex Permittivity and Penetration Depth of Soils Using P-Band SAR Polarimetry |
260 | _ | _ | |a Basel |c 2022 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1656059421_21488 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A P-band SAR moisture estimation method is introduced for complex soil permittivity and penetration depth estimation using fully polarimetric P-band SAR signals. This method combines eigen- and model-based decomposition techniques for separation of the total backscattering signal into three scattering components (soil, dihedral, and volume). The incorporation of a soil scattering model allows for the first time the estimation of complex soil permittivity and permittivity-based penetration depth. The proposed method needs no prior assumptions on land cover characteristics and is applicable to a variety of vegetation types. The technique is demonstrated for airborne P-band SAR measurements acquired during the AirMOSS campaign (2012–2015). The estimated complex permittivity agrees well with climate and soil conditions at different monitoring sites. Based on frequency and permittivity, P-band penetration depths vary from 5 cm to 35 cm. This value range is in accordance with previous studies in the literature. Comparison of the results is challenging due to the sparsity of vertical soil in situ sampling. It was found that the disagreement between in situ measurements and SAR-based estimates originates from the discrepancy between the in situ measuring depth of the top-soil layer (0–5 cm) and the median penetration depth of the P-band waves (24.5–27 cm). |
536 | _ | _ | |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217) |0 G:(DE-HGF)POF4-2173 |c POF4-217 |f POF IV |x 0 |
700 | 1 | _ | |a Jagdhuber, Thomas |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Tabatabaeenejad, Alireza |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Alemohammad, Hamed |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Montzka, Carsten |0 P:(DE-Juel1)129506 |b 4 |
700 | 1 | _ | |a Friedl, Peter |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Forootan, Ehsan |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Kunstmann, Harald |0 P:(DE-HGF)0 |b 7 |
773 | _ | _ | |a 10.3390/rs14122755 |0 PERI:(DE-600)2513863-7 |n 12 |p 2755 |t Remote sensing |v 14 |y 2022 |x 2072-4292 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/908081/files/remotesensing-14-02755-v3.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:908081 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129506 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2173 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-05-04 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-05-04 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-05-04 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b REMOTE SENS-BASEL : 2021 |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-08-25T08:07:22Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-08-25T08:07:22Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-08-25T08:07:22Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-09 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-09 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-09 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b REMOTE SENS-BASEL : 2021 |d 2022-11-09 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |k IBG-3 |l Agrosphäre |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|