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• First application: Pure downscaling of 2m 
temperature from IFS forecasts

• Data: model data with ∆𝑥𝑐𝑜𝑎= 0.8° coar-
sened from IFS forecasts with ∆𝑥𝐼𝐹𝑆 = 0.1°

• Task: Learn mapping from ∆𝑥𝑐𝑜𝑎 to ∆𝑥𝐼𝐹𝑆

• Model: U-shaped convolutional encoder-
decoder network (U-Net), see Fig. 4

• Only additional (static) predictor: surface 
elevation 𝑧𝑠𝑓𝑐

• Dataset:

o Training data: 2016-2019; validation 
and test data: 2020

o Target domain: 128x96 grid points 
(∆𝑥 = 0.1°) over Central Europe

o Data times:

(1) Initial time of 12 UTC-runs 
(2) Data from 10-16 UTC + augmentation

You want to run the 

downscaling U-Net on 

your own?

Fig. 5: Evaluation of the U-Net trained on the 
augmented dataset.
Left: Example for downscaled T2m-field from 
the test dataset. 
Bottom right: MSE for the U-Nets trained on 
the small and augmented dataset. 

Fig. 4: Illustration of the U-Net used for down-
scaling the 2m temperature.
From Sha et al., 2020.

3) Downscaling with a U-Net

4) Downscaling with a Wasserstein GAN

Fig. 7: Evaluation of the Wasserstein GAN. 
Left: Example for downscaled T2m-field from 
the test dataset. 
Bottom right: Hourly MSE averaged over the 
test dataset period for the trained 
Wasserstein GAN.

Fig. 6: Illustration of the ERA5-DeepHRES architecture.

• Target 

o ‘Real’ downscaling: Map short-
range forecasts (lead times 6-17 
hours) from ERA5 (∆𝑥𝑐𝑜𝑎 = 0.8°) 
to IFS (∆𝑥𝐼𝐹𝑆 = 0.1°)

o Generalize application to 
arbitrary daytimes and season

• Approach 

o Encode planetary boundary layer 
(PBL) state: T(850 hPa, 925 hPa), 
𝐯ℎ(10m), PBL height, surface heat 
fluxes (+ 𝑧𝑠𝑓𝑐 and T(2m))

o Integrate U-Net into Wasser-
stein GAN (Fig. 6)
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5) Conclusion and outlook
• Improve downscaling model

o Fine-tune hyperparameters and 
include time embeddings

o Improve model architecture
o Comprehensive evaluation

• Downscaling on kilometre-scale
o ICON  COSMO-D2
o Include observations
o Swin Transformer architecture 

(see Liu et al., 2021)

1) Motivation

• Spatial resolution of atmospheric models is limited

o Limited Computational resources

o Parameterization challenges at gray-zone 
resolution (e.g. convection)

• Alternative: Statistical downscaling 

• Recent success with Generative Adversarial 
Networks (GANs), see e.g. Harris et al., 2022

• Here: Downscaling of 2m temperature (T2m)

• Relevance: High spatial variability

o Locally enhanced heat stress (Fig. 1)

o Local night frost with trapped cold pools

Fig. 1: 90th percentile of Tmax for Mexico City 
as an example of local heat stress over 
complex terrain (adapted from Vargas and 
Magana, 2020). The spatial resolution of the 
ERA5-data (dashed lines) is too coarse to 
capture the high spatial variability in Tmax.

2) The MAELSTROM project

• MAchinE Learning for Scalable meTeoROlogy
and cliMate

• Coordination by ECMWF

• Project duration: April 2021 – April 2024

• Objective: efficient use of new machine 
learning capacities on supercomputers for
the Weather and Climate community

• Collaboration between meteorologists, 
software developers and HPC specialists  

ML applications under development

(1) Blend citizen observations and numerical 
weather forecasts

(2) Incorporate social media data into prediction 
framework

(3) Develop neural network emulators for faster 
weather forecast models & data assimilation

(4) Improve ensemble predictions in forecast 
post-processing

(5) Improve local weather prediction in forecast 
post-processing  Statistical downscaling

(6) Support energy production with bespoke 
weather forecasts

Visit our website

Fig. 2: Map which shows the headquarters of 
all partners of the MAELSTROM consortium.

Fig. 3: Interacting domains in the 
MAELSTROM project.
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