000908092 001__ 908092
000908092 005__ 20240712100845.0
000908092 0247_ $$2doi$$a10.5194/acp-22-7179-2022
000908092 0247_ $$2ISSN$$a1680-7316
000908092 0247_ $$2ISSN$$a1680-7324
000908092 0247_ $$2Handle$$a2128/31447
000908092 0247_ $$2altmetric$$aaltmetric:129211895
000908092 0247_ $$2WOS$$aWOS:000805224600001
000908092 037__ $$aFZJ-2022-02371
000908092 082__ $$a550
000908092 1001_ $$00000-0003-4442-0755$$aFadnavis, Suvarna$$b0$$eCorresponding author
000908092 245__ $$aTropospheric warming over the northern Indian Ocean caused by South Asian anthropogenic aerosols: possible impact on the upper troposphere and lower stratosphere
000908092 260__ $$aKatlenburg-Lindau$$bEGU$$c2022
000908092 3367_ $$2DRIVER$$aarticle
000908092 3367_ $$2DataCite$$aOutput Types/Journal article
000908092 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1657178355_20520
000908092 3367_ $$2BibTeX$$aARTICLE
000908092 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908092 3367_ $$00$$2EndNote$$aJournal Article
000908092 520__ $$aAtmospheric concentrations of South Asian anthropogenic aerosols and their transport play a key role in the regional hydrological cycle. Here, we use the ECHAM6-HAMMOZ chemistry–climate model to show the structure and implications of the transport pathways of these aerosols during spring (March–May). Our simulations indicate that large amounts of anthropogenic aerosols are transported from South Asia to the northern Indian Ocean and western Pacific. These aerosols are then lifted into the upper troposphere and lower stratosphere (UTLS) by the ascending branch of the Hadley circulation, where they enter the westerly jet. They are further transported to the Southern Hemisphere (∼15–30∘ S) and downward (320–340 K) via westerly ducts over the tropical Atlantic (5∘ S–5∘ N, 10–40∘ W) and Pacific (5∘ S–5∘ N, 95–140∘ E). The carbonaceous aerosols are also transported to the Arctic, leading to local heating (0.08–0.3 K per month, an increase by 10 %–60 %).The presence of anthropogenic aerosols causes a negative radiative forcing (RF) at the top of the atmosphere (TOA) (−0.90 ± 0.089 W m−2) and surface (−5.87 ± 0.31 W m−2) and atmospheric warming (+4.96 ± 0.24 W m−2) over South Asia (60–90∘ E, 8–23∘ N), except over the Indo-Gangetic Plain (75–83∘ E, 23–30∘ N), where RF at the TOA is positive (+1.27 ± 0.16 W m−2) due to large concentrations of absorbing aerosols. The carbonaceous aerosols lead to in-atmospheric heating along the aerosol column extending from the boundary layer to the upper troposphere (0.1 to 0.4 K per month, increase by 4 %–60 %) and in the lower stratosphere at 40–90∘ N (0.02 to 0.3 K per month, increase by 10 %–60 %). The increase in tropospheric heating due to aerosols results in an increase in water vapor concentrations, which are then transported from the northern Indian Ocean–western Pacific to the UTLS over 45–45∘ N (increasing water vapor by 1 %–10 %).
000908092 536__ $$0G:(DE-HGF)POF4-2112$$a2112 - Climate Feedbacks (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000908092 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908092 7001_ $$0P:(DE-HGF)0$$aChavan, Prashant$$b1
000908092 7001_ $$0P:(DE-HGF)0$$aJoshi, Akash$$b2
000908092 7001_ $$0P:(DE-HGF)0$$aSonbawne, Sunil M.$$b3
000908092 7001_ $$0P:(DE-HGF)0$$aAcharya, Asutosh$$b4
000908092 7001_ $$0P:(DE-HGF)0$$aDevara, Panuganti C. S.$$b5
000908092 7001_ $$00000-0002-2319-6769$$aRap, Alexandru$$b6
000908092 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b7$$ufzj
000908092 7001_ $$0P:(DE-Juel1)129138$$aMüller, Rolf$$b8
000908092 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-22-7179-2022$$gVol. 22, no. 11, p. 7179 - 7191$$n11$$p7179 - 7191$$tAtmospheric chemistry and physics$$v22$$x1680-7316$$y2022
000908092 8564_ $$uhttps://juser.fz-juelich.de/record/908092/files/acp-22-7179-2022.pdf$$yOpenAccess
000908092 909CO $$ooai:juser.fz-juelich.de:908092$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000908092 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b7$$kFZJ
000908092 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129138$$aForschungszentrum Jülich$$b8$$kFZJ
000908092 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2112$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000908092 9141_ $$y2022
000908092 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000908092 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908092 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000908092 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000908092 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908092 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000908092 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-19
000908092 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-19
000908092 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-18T05:37:09Z
000908092 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-18T05:37:09Z
000908092 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2019-12-18T05:37:09Z
000908092 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-19
000908092 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-19
000908092 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-19
000908092 920__ $$lyes
000908092 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000908092 9801_ $$aFullTexts
000908092 980__ $$ajournal
000908092 980__ $$aVDB
000908092 980__ $$aUNRESTRICTED
000908092 980__ $$aI:(DE-Juel1)IEK-7-20101013
000908092 981__ $$aI:(DE-Juel1)ICE-4-20101013