000908108 001__ 908108
000908108 005__ 20230123110626.0
000908108 0247_ $$2doi$$a10.3762/bjnano.13.16
000908108 0247_ $$2Handle$$a2128/31319
000908108 0247_ $$2altmetric$$aaltmetric:123970503
000908108 0247_ $$2pmid$$a35281628
000908108 0247_ $$2WOS$$aWOS:000756037100001
000908108 037__ $$aFZJ-2022-02379
000908108 082__ $$a620
000908108 1001_ $$0P:(DE-Juel1)168174$$aMennicken, Max$$b0
000908108 245__ $$aImpact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes
000908108 260__ $$aFrankfurt, M.$$bBeilstein-Institut zur Förderung der Chemischen Wissenschaften$$c2022
000908108 3367_ $$2DRIVER$$aarticle
000908108 3367_ $$2DataCite$$aOutput Types/Journal article
000908108 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655207137_17363
000908108 3367_ $$2BibTeX$$aARTICLE
000908108 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908108 3367_ $$00$$2EndNote$$aJournal Article
000908108 520__ $$aThe performance of nanoelectronic and molecular electronic devices relies strongly on the employed functional units and their addressability, which is often a matter of appropriate interfaces and device design. Here, we compare two promising designs to build solid-state electronic devices utilizing the same functional unit. Optically addressable Ru-terpyridine complexes were incorporated in supramolecular wires or employed as ligands of gold nanoparticles and contacted by nanoelectrodes. The resulting small-area nanodevices were thoroughly electrically characterized as a function of temperature and light exposure. Differences in the resulting device conductance could be attributed to the device design and the respective transport mechanism, that is, thermally activated hopping conduction in the case of Ru-terpyridine wire devices or sequential tunneling in nanoparticle-based devices. Furthermore, the conductance switching of nanoparticle-based devices upon 530 nm irradiation was attributed to plasmon-induced metal-to-ligand charge transfer in the Ru-terpyridine complexes used as switching ligands. Finally, our results reveal a superior device performance of nanoparticle-based devices compared to molecular wire devices based on Ru-terpyridine complexes as functional units.
000908108 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000908108 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908108 7001_ $$0P:(DE-HGF)0$$aPeter, Sophia Katharina$$b1
000908108 7001_ $$00000-0003-1194-5192$$aKaulen, Corinna$$b2
000908108 7001_ $$0P:(DE-HGF)0$$aSimon, Ulrich$$b3
000908108 7001_ $$0P:(DE-Juel1)130751$$aKarthäuser, Silvia$$b4$$eCorresponding author
000908108 773__ $$0PERI:(DE-600)2583584-1$$a10.3762/bjnano.13.16$$gVol. 13, p. 219 - 229$$p219 - 229$$tBeilstein journal of nanotechnology$$v13$$x2190-4286$$y2022
000908108 8564_ $$uhttps://juser.fz-juelich.de/record/908108/files/2190-4286-13-16.pdf$$yOpenAccess
000908108 909CO $$ooai:juser.fz-juelich.de:908108$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000908108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168174$$aForschungszentrum Jülich$$b0$$kFZJ
000908108 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130751$$aForschungszentrum Jülich$$b4$$kFZJ
000908108 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000908108 9141_ $$y2022
000908108 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000908108 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908108 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000908108 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908108 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBEILSTEIN J NANOTECH : 2021$$d2022-11-26
000908108 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-26
000908108 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-26
000908108 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-02-13T14:46:22Z
000908108 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-02-13T14:46:22Z
000908108 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2019-02-13T14:46:22Z
000908108 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-26
000908108 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-26
000908108 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-26
000908108 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-26
000908108 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000908108 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000908108 980__ $$ajournal
000908108 980__ $$aVDB
000908108 980__ $$aUNRESTRICTED
000908108 980__ $$aI:(DE-Juel1)PGI-7-20110106
000908108 980__ $$aI:(DE-82)080009_20140620
000908108 9801_ $$aFullTexts