000908112 001__ 908112
000908112 005__ 20250129092500.0
000908112 0247_ $$2doi$$a10.3390/s22103882
000908112 0247_ $$2Handle$$a2128/31367
000908112 0247_ $$2altmetric$$aaltmetric:129686777
000908112 0247_ $$2pmid$$apmid:35632291
000908112 0247_ $$2WOS$$aWOS:000802486100001
000908112 037__ $$aFZJ-2022-02382
000908112 041__ $$aEnglish
000908112 082__ $$a620
000908112 1001_ $$0P:(DE-Juel1)179562$$aTazifor, Martial$$b0$$eCorresponding author
000908112 245__ $$aModel-Based Correction of Temperature-Dependent Measurement Errors in Frequency Domain Electromagnetic Induction (FDEMI) Systems
000908112 260__ $$aBasel$$bMDPI$$c2022
000908112 3367_ $$2DRIVER$$aarticle
000908112 3367_ $$2DataCite$$aOutput Types/Journal article
000908112 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1656063830_21488
000908112 3367_ $$2BibTeX$$aARTICLE
000908112 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908112 3367_ $$00$$2EndNote$$aJournal Article
000908112 520__ $$aData measured using electromagnetic induction (EMI) systems are known to be susceptible to measurement influences associated with time-varying external ambient factors. Temperature variation is one of the most prominent factors causing drift in EMI data, leading to non-reproducible measurement results. Typical approaches to mitigate drift effects in EMI instruments rely on a temperature drift calibration, where the instrument is heated up to specific temperatures in a controlled environment and the observed drift is determined to derive a static thermal apparent electrical conductivity (ECa) drift correction. In this study, a novel correction method is presented that models the dynamic characteristics of drift using a low-pass filter (LPF) and uses it for correction. The method is developed and tested using a customized EMI device with an intercoil spacing of 1.2 m, optimized for low drift and equipped with ten temperature sensors that simultaneously measure the internal ambient temperature across the device. The device is used to perform outdoor calibration measurements over a period of 16 days for a wide range of temperatures. The measured temperature-dependent ECa drift of the system without corrections is approximately 2.27 mSm−1K−1, with a standard deviation (std) of only 30 μSm−1K−1 for a temperature variation of around 30 K. The use of the novel correction method reduces the overall root mean square error (RMSE) for all datasets from 15.7 mSm−1 to a value of only 0.48 mSm−1. In comparison, a method using a purely static characterization of drift could only reduce the error to an RMSE of 1.97 mSm−1. The results show that modeling the dynamic thermal characteristics of the drift helps to improve the accuracy by a factor of four compared to a purely static characterization. It is concluded that the modeling of the dynamic thermal characteristics of EMI systems is relevant for improved drift correction.
000908112 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000908112 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908112 7001_ $$0P:(DE-Juel1)133962$$aZimmermann, Egon$$b1
000908112 7001_ $$0P:(DE-Juel1)129472$$aHuisman, Johan Alexander$$b2
000908112 7001_ $$0P:(DE-Juel1)140595$$aDick, Markus$$b3$$ufzj
000908112 7001_ $$0P:(DE-Juel1)140421$$aMester, Achim$$b4$$ufzj
000908112 7001_ $$0P:(DE-Juel1)142562$$avan Waasen, Stefan$$b5$$ufzj
000908112 773__ $$0PERI:(DE-600)2052857-7$$a10.3390/s22103882$$gVol. 22, no. 10, p. 3882 -$$n10$$p3882 -$$tSensors$$v22$$x1424-8220$$y2022
000908112 8564_ $$uhttps://juser.fz-juelich.de/record/908112/files/sensors-22-03882-v2.pdf$$yOpenAccess
000908112 8767_ $$d2022-07-28$$eAPC$$jZahlung erfolgt$$zOABLE
000908112 909CO $$ooai:juser.fz-juelich.de:908112$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000908112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179562$$aForschungszentrum Jülich$$b0$$kFZJ
000908112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133962$$aForschungszentrum Jülich$$b1$$kFZJ
000908112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich$$b2$$kFZJ
000908112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140595$$aForschungszentrum Jülich$$b3$$kFZJ
000908112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140421$$aForschungszentrum Jülich$$b4$$kFZJ
000908112 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142562$$aForschungszentrum Jülich$$b5$$kFZJ
000908112 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000908112 9141_ $$y2022
000908112 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000908112 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908112 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000908112 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000908112 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908112 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000908112 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSENSORS-BASEL : 2021$$d2022-11-25
000908112 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000908112 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000908112 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-25T08:37:47Z
000908112 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-25T08:37:47Z
000908112 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-25T08:37:47Z
000908112 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-25
000908112 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-25
000908112 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000908112 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-25
000908112 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000908112 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000908112 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-25
000908112 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000908112 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000908112 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000908112 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000908112 920__ $$lyes
000908112 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000908112 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x1
000908112 9801_ $$aFullTexts
000908112 980__ $$ajournal
000908112 980__ $$aVDB
000908112 980__ $$aUNRESTRICTED
000908112 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000908112 980__ $$aI:(DE-Juel1)IBG-3-20101118
000908112 980__ $$aAPC
000908112 981__ $$aI:(DE-Juel1)PGI-4-20110106