000908114 001__ 908114
000908114 005__ 20240313103121.0
000908114 0247_ $$2doi$$a10.3389/fninf.2022.835657
000908114 0247_ $$2Handle$$a2128/31692
000908114 0247_ $$2pmid$$a35712677
000908114 0247_ $$2WOS$$aWOS:000810997200001
000908114 037__ $$aFZJ-2022-02384
000908114 082__ $$a610
000908114 1001_ $$0P:(DE-Juel1)174497$$aLayer, Moritz$$b0$$eCorresponding author$$ufzj
000908114 245__ $$aNNMT: Mean-Field Based Analysis Tools for Neuronal Network Models
000908114 260__ $$aLausanne$$bFrontiers Research Foundation$$c2022
000908114 3367_ $$2DRIVER$$aarticle
000908114 3367_ $$2DataCite$$aOutput Types/Journal article
000908114 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661232700_2172
000908114 3367_ $$2BibTeX$$aARTICLE
000908114 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908114 3367_ $$00$$2EndNote$$aJournal Article
000908114 520__ $$aMean-field theory of neuronal networks has led to numerous advances in our analyticaland intuitive understanding of their dynamics during the past decades. In order tomake mean-field based analysis tools more accessible, we implemented an extensible,easy-to-use open-source Python toolbox that collects a variety of mean-field methodsfor the leaky integrate-and-fire neuron model. The Neuronal Network Mean-field Toolbox(NNMT) in its current state allows for estimating properties of large neuronal networks,such as firing rates, power spectra, and dynamical stability in mean-field and linearresponse approximation, without running simulations. In this article, we describe how thetoolbox is implemented, show how it is used to reproduce results of previous studies, anddiscuss different use-cases, such as parameter space explorations, or mapping differentnetwork models. Although the initial version of the toolbox focuses on methods for leakyintegrate-and-fire neurons, its structure is designed to be open and extensible. It aims toprovide a platform for collecting analytical methods for neuronal network model analysis,such that the neuroscientific community can take maximal advantage of them.
000908114 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000908114 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x1
000908114 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x2
000908114 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x3
000908114 536__ $$0G:(GEPRIS)368482240$$aGRK 2416: MultiSenses-MultiScales: Novel approaches to decipher neural processing in multisensory integration (368482240)$$c368482240$$x4
000908114 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x5
000908114 536__ $$0G:(DE-Juel1)HGF-SMHB-2014-2018$$aMSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)$$cHGF-SMHB-2014-2018$$fMSNN$$x6
000908114 536__ $$0G:(GEPRIS)491111487$$aOpen-Access-Publikationskosten Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x7
000908114 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908114 7001_ $$0P:(DE-Juel1)162130$$aSenk, Johanna$$b1$$ufzj
000908114 7001_ $$0P:(DE-Juel1)176777$$aEssink, Simon$$b2$$ufzj
000908114 7001_ $$0P:(DE-Juel1)173607$$avan Meegen, Alexander$$b3$$ufzj
000908114 7001_ $$0P:(DE-Juel1)162131$$aBos, Hannah$$b4
000908114 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b5$$ufzj
000908114 773__ $$0PERI:(DE-600)2452979-5$$a10.3389/fninf.2022.835657$$gVol. 16, p. 835657$$p835657$$tFrontiers in neuroinformatics$$v16$$x1662-5196$$y2022
000908114 8564_ $$uhttps://juser.fz-juelich.de/record/908114/files/layer2022-nnmt.pdf$$yOpenAccess
000908114 8767_ $$d2022-12-27$$eAPC$$jDeposit$$lDeposit: Frontiers$$z2507,50 USD
000908114 909CO $$ooai:juser.fz-juelich.de:908114$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000908114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174497$$aForschungszentrum Jülich$$b0$$kFZJ
000908114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162130$$aForschungszentrum Jülich$$b1$$kFZJ
000908114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176777$$aForschungszentrum Jülich$$b2$$kFZJ
000908114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173607$$aForschungszentrum Jülich$$b3$$kFZJ
000908114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b5$$kFZJ
000908114 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000908114 9141_ $$y2022
000908114 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000908114 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000908114 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000908114 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000908114 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000908114 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908114 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908114 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000908114 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000908114 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000908114 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROINFORM : 2021$$d2022-11-24
000908114 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-24
000908114 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-24
000908114 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T13:08:14Z
000908114 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T13:08:14Z
000908114 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-11T13:08:14Z
000908114 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-24
000908114 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-24
000908114 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-24
000908114 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-24
000908114 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-24
000908114 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000908114 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000908114 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000908114 9801_ $$aFullTexts
000908114 980__ $$ajournal
000908114 980__ $$aVDB
000908114 980__ $$aUNRESTRICTED
000908114 980__ $$aI:(DE-Juel1)INM-6-20090406
000908114 980__ $$aI:(DE-Juel1)IAS-6-20130828
000908114 980__ $$aI:(DE-Juel1)INM-10-20170113
000908114 980__ $$aAPC
000908114 981__ $$aI:(DE-Juel1)IAS-6-20130828