000908123 001__ 908123 000908123 005__ 20240625095123.0 000908123 0247_ $$2doi$$a10.1088/1751-8121/ac717d 000908123 0247_ $$2ISSN$$a0022-3689 000908123 0247_ $$2ISSN$$a0301-0015 000908123 0247_ $$2ISSN$$a0305-4470 000908123 0247_ $$2ISSN$$a1361-6447 000908123 0247_ $$2ISSN$$a1751-8113 000908123 0247_ $$2ISSN$$a1751-8121 000908123 0247_ $$2ISSN$$a2051-2155 000908123 0247_ $$2ISSN$$a2051-2163 000908123 0247_ $$2Handle$$a2128/31868 000908123 0247_ $$2WOS$$aWOS:000811480600001 000908123 037__ $$aFZJ-2022-02387 000908123 082__ $$a530 000908123 1001_ $$0P:(DE-Juel1)176760$$aDi Cairano, Loris$$b0$$eCorresponding author 000908123 245__ $$aThe geometric theory of phase transitions 000908123 260__ $$aBristol$$bIOP Publ.$$c2022 000908123 3367_ $$2DRIVER$$aarticle 000908123 3367_ $$2DataCite$$aOutput Types/Journal article 000908123 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1663675328_27718 000908123 3367_ $$2BibTeX$$aARTICLE 000908123 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000908123 3367_ $$00$$2EndNote$$aJournal Article 000908123 520__ $$aWe develop a geometric theory of phase transitions (PTs) for Hamiltonian systems in the microcanonical ensemble. Such a theory allows to rephrase the Bachmann's classification of PTs for finite-size systems in terms of geometric properties of the energy level sets (ELSs) associated to the Hamiltonian function. Specifically, by defining the microcanonical entropy as the logarithm of the ELS's volume equipped with a suitable metric tensor, we obtain an exact equivalence between thermodynamics and geometry. In fact, we show that any energy-derivative of the entropy can be associated to a specific combination of geometric curvature structures of the ELSs which, in turn, are well-precise combinations of the potential function derivatives. In so doing, we establish a direct connection between the microscopic description provided by the Hamiltonian and the collective behavior which emerges in a PT. Finally, we also analyze the behavior of the ELSs' geometry in the thermodynamic limit showing that nonanalyticities of the energy-derivatives of the entropy are caused by nonanalyticities of certain geometric properties of the ELSs around the transition point. We validate the theory studying PTs that occur in the ϕ4 and Ginzburg–Landau-like models. 000908123 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0 000908123 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000908123 773__ $$0PERI:(DE-600)1363010-6$$a10.1088/1751-8121/ac717d$$gVol. 55, no. 27, p. 27LT01 -$$n27$$p27LT01 -$$tJournal of physics / A$$v55$$x0022-3689$$y2022 000908123 8564_ $$uhttps://juser.fz-juelich.de/record/908123/files/Article%20%2B%20Supplementary%20information.pdf$$yOpenAccess 000908123 8564_ $$uhttps://juser.fz-juelich.de/record/908123/files/2205.04552.pdf$$yOpenAccess 000908123 909CO $$ooai:juser.fz-juelich.de:908123$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000908123 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176760$$aForschungszentrum Jülich$$b0$$kFZJ 000908123 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0 000908123 9141_ $$y2022 000908123 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29 000908123 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29 000908123 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000908123 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-10$$wger 000908123 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-10 000908123 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-10 000908123 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-10 000908123 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-10 000908123 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-10 000908123 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS A-MATH THEOR : 2021$$d2022-11-10 000908123 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-10 000908123 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-10 000908123 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-10 000908123 920__ $$lyes 000908123 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0 000908123 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1 000908123 980__ $$ajournal 000908123 980__ $$aVDB 000908123 980__ $$aUNRESTRICTED 000908123 980__ $$aI:(DE-Juel1)IAS-5-20120330 000908123 980__ $$aI:(DE-Juel1)INM-9-20140121 000908123 9801_ $$aFullTexts