001     908194
005     20220621190116.0
024 7 _ |a 10.1093/neuonc/nox168.652
|2 doi
024 7 _ |a 1522-8517
|2 ISSN
024 7 _ |a 1523-5866
|2 ISSN
037 _ _ |a FZJ-2022-02447
082 _ _ |a 610
100 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 0
|u fzj
245 _ _ |a NIMG-82. PREDICTING ISOCITRATE DEHYDROGENASE GENOTYPE IN GLIOMAS USING FET PET RADIOMICS
260 _ _ |c 2017
336 7 _ |a Text
|2 DataCite
336 7 _ |a Communication
|b comm
|m comm
|0 PUB:(DE-HGF)4
|s 1655807717_15481
|2 PUB:(DE-HGF)
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a OTHER
|2 ORCID
336 7 _ |a Other
|2 DINI
336 7 _ |a Personal Communication
|0 4
|2 EndNote
520 _ _ |a AbstractBACKGROUNDWe investigated the potential of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET textural features compared with static and dynamic FET PET parameters for preoperative differentiation of IDH-mutated (mut) from IDH-wild type (wt) gliomas.METHODSEighty-four glioma patients underwent dynamic FET PET imaging prior to histological confirmation on a stand-alone PET scanner (56 patients; 31 GBM-wt, 3 GBM-mut, 10 AA-wt, 7 AA-mut, 2 AII-mut, 3 ODGII-mut) or a high-resolution hybrid PET/MR scanner (28 patients; 15 GBM-wt, 2 GBM-mut, 1 AA-wt, 7 AA-mut, 1 ODGIII-mut, 1 AII-wt, 1 AII-mut). The IDH genotype was assessed by immunohistochemistry or direct sequencing (if immunohistochemistry was negative). Maximum and mean tumor-to-brain ratios (TBRmax/mean) of FET uptake were determined and time-activity curves of FET uptake were used to evaluate the dynamic PET parameters time-to-peak (TTP) and slope (slope of linear regression line evaluated 20-50 min post-injection). Additionally, 39 textural parameters were calculated using the software LifeX. The diagnostic accuracy for IDH genotype prediction by FET PET was evaluated using ROC analyses using neuropathological results of IDH analysis as reference. In order to further increase the diagnostic accuracy, parameters were combined using linear logistic regression. Data of each scanner type were analyzed separately.RESULTSIndependent of scanner type, diagnostic accuracies of slope, TBRmean and TBRmax were similar (range, 75-80%). Ten textural features showed an accuracy ranging from 71-79% independent of scanner type. For both PET scanners the combined analysis increased the diagnostic accuracy (84% and 93%, respectively).CONCLUSIONSThe combination of static and dynamic FET PET parameters with radiomics derived from textural feature analysis leads to a high diagnostic accuracy to predict IDH genotype of cerebral gliomas.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lerche, Christoph
|0 P:(DE-Juel1)164254
|b 1
|u fzj
700 1 _ |a Bauer, Elena
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Steger, Jan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Stoffels, Gabriele
|0 P:(DE-Juel1)131627
|b 4
|u fzj
700 1 _ |a Blau, Tobias
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Dunkl, Veronika
|0 P:(DE-Juel1)156211
|b 6
700 1 _ |a Filss, Christian P
|0 P:(DE-Juel1)141877
|b 7
|u fzj
700 1 _ |a Stegmayr, Carina
|0 P:(DE-Juel1)156479
|b 8
|u fzj
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 9
|u fzj
700 1 _ |a Shah, Nadim J
|0 P:(DE-Juel1)131794
|b 10
|u fzj
700 1 _ |a Fink, Gereon
|0 P:(DE-Juel1)131720
|b 11
|u fzj
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 12
|u fzj
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 13
|u fzj
773 _ _ |a 10.1093/neuonc/nox168.652
|0 PERI:(DE-600)2094060-9
|y 2017
|g Vol. 19, no. suppl_6, p. vi160 - vi160
|x 1523-5866
909 C O |o oai:juser.fz-juelich.de:908194
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)164254
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)141877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)156479
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)166419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)143792
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOLOGY : 2019
|d 2021-02-03
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NEURO-ONCOLOGY : 2019
|d 2021-02-03
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-Juel1)VDB1046
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 2
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 3
980 _ _ |a comm
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)VDB1046
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21