000908195 001__ 908195
000908195 005__ 20220621190116.0
000908195 0247_ $$2doi$$a10.1093/neuonc/nox036.282
000908195 0247_ $$2ISSN$$a1522-8517
000908195 0247_ $$2ISSN$$a1523-5866
000908195 037__ $$aFZJ-2022-02448
000908195 082__ $$a610
000908195 1001_ $$0P:(DE-Juel1)145110$$aLohmann, P.$$b0$$ufzj
000908195 245__ $$aP09.26 FET PET radiomics - diagnosis of pseudoprogression in glioblastoma patients based on textural features
000908195 260__ $$c2017
000908195 3367_ $$2DataCite$$aText
000908195 3367_ $$0PUB:(DE-HGF)4$$2PUB:(DE-HGF)$$aCommunication$$bcomm$$mcomm$$s1655804441_16933
000908195 3367_ $$2BibTeX$$aMISC
000908195 3367_ $$2ORCID$$aOTHER
000908195 3367_ $$2DINI$$aOther
000908195 3367_ $$04$$2EndNote$$aPersonal Communication
000908195 520__ $$aAbstractIntroduction: The differentiation of pseudoprogression (PsP) from tumor progression (TP) in glioblastoma patients is difficult on the basis of standard MRI alone. Textural feature analysis as part of the concept of radiomics offers a quantitative method to describe tumor heterogeneity and gains increasing interest in the field of neuro-oncology. In our study, we investigated the potential of textural features of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET to discriminate between PsP and TP in glioblastoma patients. Materials and Methods: Twenty-three newly diagnosed glioblastoma patients with MRI findings suspicious for TP within 12 weeks after completion of chemoradiation with temozolomide underwent an additional dynamic FET PET scan. Volumes-of-interest were defined on summed images from 20-40 min post-injection (p.i.) by a 3-dimensional auto-contouring process using a tumor-to-brain ratio (TBR) of 1.6 or more. For each lesion, TBRs and the time-activity curves (TACs) of the FET uptake were determined. The TACs were used to evaluate the dynamic FET PET parameters time-to-peak (TTP), slope (slope of linear regression line 20-50 min p.i.) and intercept (intercept of linear regression line with y-axis). Additionally, 39 textural parameters were calculated using the software LifeX (lifexsoft.org). The diagnostic accuracy of TBRs, TTP, slope, intercept, and textural parameters to discriminate between PsP and TP was evaluated using ROC analyses. In order to further increase the diagnostic accuracy, parameters were combined using linear logistic regression for classification of PsP and TP. Results: Fourteen patients had a clinico-radiological diagnosis of TP and nine patients had PsP. The FET PET parameters TBRmean, TBRmax, TTP and intercept yielded a diagnostic accuracy to discriminate between PsP and TP of 79%, 79%, 58%, 63%, respectively. The dynamic FET PET parameter slope yielded the highest diagnostic accuracy of 83% to discriminate between PsP and TP. Two textural features showed a comparable accuracy of 79%. The diagnostic accuracy could not be increased by combination of parameters. Conclusions: Textural features yielded a comparable diagnostic accuracy for diagnosis of pseudoprogression in glioblastoma patients in comparison with static and dynamic FET PET parameters. Textural features might yield additional valuable information for this highly relevant clinical problem and should be further evaluated in larger cohort prospective studies.
000908195 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000908195 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908195 7001_ $$0P:(DE-Juel1)164254$$aLerche, C.$$b1$$ufzj
000908195 7001_ $$0P:(DE-Juel1)131627$$aStoffels, G.$$b2$$ufzj
000908195 7001_ $$0P:(DE-Juel1)141877$$aFilss, C. P.$$b3$$ufzj
000908195 7001_ $$0P:(DE-Juel1)156479$$aStegmayr, C.$$b4$$ufzj
000908195 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, B.$$b5$$ufzj
000908195 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b6$$ufzj
000908195 7001_ $$0P:(DE-Juel1)131777$$aLangen, K.$$b7$$ufzj
000908195 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, N.$$b8$$ufzj
000908195 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/nox036.282$$gVol. 19, no. suppl_3, p. iii75 - iii75$$x1523-5866$$y2017
000908195 909CO $$ooai:juser.fz-juelich.de:908195$$pVDB
000908195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b0$$kFZJ
000908195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164254$$aForschungszentrum Jülich$$b1$$kFZJ
000908195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b2$$kFZJ
000908195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich$$b3$$kFZJ
000908195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156479$$aForschungszentrum Jülich$$b4$$kFZJ
000908195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b5$$kFZJ
000908195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b6$$kFZJ
000908195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b7$$kFZJ
000908195 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b8$$kFZJ
000908195 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000908195 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000908195 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000908195 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000908195 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-03
000908195 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000908195 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000908195 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-02-03
000908195 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000908195 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000908195 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2019$$d2021-02-03
000908195 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNEURO-ONCOLOGY : 2019$$d2021-02-03
000908195 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000908195 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000908195 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000908195 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x3
000908195 980__ $$acomm
000908195 980__ $$aVDB
000908195 980__ $$aI:(DE-Juel1)INM-4-20090406
000908195 980__ $$aI:(DE-Juel1)INM-11-20170113
000908195 980__ $$aI:(DE-Juel1)VDB1046
000908195 980__ $$aI:(DE-Juel1)INM-5-20090406
000908195 980__ $$aUNRESTRICTED