001     908198
005     20220621190117.0
024 7 _ |a 10.1109/ISBI.2017.7950508
|2 doi
037 _ _ |a FZJ-2022-02451
100 1 _ |a Sforazzini, Francesco
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)
|c Melbourne
|d 2017-04-18 - 2017-04-21
|w Australia
245 _ _ |a MR-based attenuation map re-alignment and motion correction in simultaneous brain MR-PET imaging
260 _ _ |c 2017
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1655807735_15481
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Abstract:Head movement is a major issue in dynamic PET imaging. A simultaneous MR-PET scanner is capable of acquiring both MR and PET data concurrently, which enables opportunities to use MR information for PET motion correction. Here we propose an MR-based method to detect head motion and to correct motion artefacts during PET image reconstruction. The method is based on co-registration of multiple MR contrasts to extract motion parameters. The motion parameters are then used to guide the Multiple Acquisition Frame (MAF) algorithm to bin the PET list-mode data into multiple frames whenever significant motion occurs. Furthermore, motion parameters are used to re-align the PET attenuation u-map to each frame prior to the image reconstruction. Finally, PET images are reconstructed for each frame and combined to produce a final image. Using both phantom and in-vivo human data, we show that this method can significantly increase image quality and reduce motion artefacts.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Chen, Zhaolin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Baran, Jakub
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bradley, Jason
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Carey, Alexandra
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Shah, N. Jon
|0 P:(DE-Juel1)131794
|b 5
|u fzj
700 1 _ |a Egan, Gary
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1109/ISBI.2017.7950508
909 C O |o oai:juser.fz-juelich.de:908198
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-Juel1)VDB1046
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 2
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)VDB1046
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21