000908207 001__ 908207
000908207 005__ 20220621190117.0
000908207 0247_ $$2doi$$a10.1093/neuonc/noy139.056
000908207 0247_ $$2ISSN$$a1522-8517
000908207 0247_ $$2ISSN$$a1523-5866
000908207 037__ $$aFZJ-2022-02458
000908207 082__ $$a610
000908207 1001_ $$0P:(DE-Juel1)145110$$aLohmann, P.$$b0$$eCorresponding author$$ufzj
000908207 245__ $$aP01.014 Spatial correlation of FET uptake and MRI contrast enhancement in newly diagnosed glioblastoma patients prior to treatment
000908207 260__ $$c2018
000908207 3367_ $$2DataCite$$aText
000908207 3367_ $$0PUB:(DE-HGF)4$$2PUB:(DE-HGF)$$aCommunication$$bcomm$$mcomm$$s1655804421_16933
000908207 3367_ $$2BibTeX$$aMISC
000908207 3367_ $$2ORCID$$aOTHER
000908207 3367_ $$2DINI$$aOther
000908207 3367_ $$04$$2EndNote$$aPersonal Communication
000908207 520__ $$aBackgroundA complete glioma resection is known to prolong survival. Contrast enhancement (CE) in MRI is usually the target for resection but the solid tumor mass may extend beyond the area of CE. It has been demonstrated that amino acid PET can detect tumor parts showing no CE in MRI. We systematically investigated the volumetric correlation of amino acid uptake with PET and CE in MRI in newly diagnosed and untreated glioblastoma patients.Material and MethodsPreoperatively, 26 patients were examined by O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET and contrast-enhanced MRI. Enhancing tumor areas on MRI were manually segmented on each transverse section and the sum of the areas was multiplied by the slice thickness to obtain contrast-enhancing volumes. The calculation of FET PET tumor volumes was based on an auto-contouring process using a tumor-to-brain ratio of 1.6 or more. For volumetric comparison, the Dice and Jaccard spatial similarity coefficients (DSC; JSC) and the percentage of overlapping volumes (OV) were calculated. Postoperatively, a glioblastoma was confirmed neuropathologically in all patients.ResultsFET PET tumor volumes were significantly larger than contrast-enhancing volumes (26.7 ± 13.4 mL vs. 15.1 ± 11.5 mL; P=0.002). The spatial similarity between FET PET and CE was poor (mean DSC, 0.44 ± 0.18; mean JSC, 0.30 ± 0.14). Additionally, approximately one quarter of patients (n=7) showed a low spatial overlap (mean OV, 36 ± 18%).ConclusionThe present data suggest that the metabolic tumor volume as detected by FET PET is substantially underestimated by CE. Information derived from both imaging modalities should be integrated for the routine management of patients with newly diagnosed glioblastoma.
000908207 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000908207 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908207 7001_ $$0P:(DE-HGF)0$$aStavrinou, P.$$b1
000908207 7001_ $$0P:(DE-HGF)0$$aLipke, K.$$b2
000908207 7001_ $$0P:(DE-Juel1)159312$$aBauer, E. K.$$b3$$ufzj
000908207 7001_ $$0P:(DE-HGF)0$$aCeccon, G.$$b4
000908207 7001_ $$aWerner, J.$$b5
000908207 7001_ $$0P:(DE-Juel1)131720$$aFink, G. R.$$b6$$ufzj
000908207 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b7$$ufzj
000908207 7001_ $$0P:(DE-Juel1)131777$$aLangen, K.$$b8$$ufzj
000908207 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, N.$$b9$$ufzj
000908207 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/noy139.056$$gVol. 20, no. suppl_3, p. iii231 - iii231$$x1523-5866$$y2018
000908207 909CO $$ooai:juser.fz-juelich.de:908207$$pVDB
000908207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b0$$kFZJ
000908207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159312$$aForschungszentrum Jülich$$b3$$kFZJ
000908207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b6$$kFZJ
000908207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b7$$kFZJ
000908207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b8$$kFZJ
000908207 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b9$$kFZJ
000908207 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000908207 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000908207 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000908207 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000908207 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-03
000908207 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000908207 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000908207 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-02-03
000908207 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000908207 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000908207 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2019$$d2021-02-03
000908207 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNEURO-ONCOLOGY : 2019$$d2021-02-03
000908207 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000908207 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000908207 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000908207 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x3
000908207 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x4
000908207 980__ $$acomm
000908207 980__ $$aVDB
000908207 980__ $$aI:(DE-Juel1)INM-4-20090406
000908207 980__ $$aI:(DE-Juel1)INM-11-20170113
000908207 980__ $$aI:(DE-Juel1)VDB1046
000908207 980__ $$aI:(DE-Juel1)INM-3-20090406
000908207 980__ $$aI:(DE-Juel1)INM-5-20090406
000908207 980__ $$aUNRESTRICTED