001     908208
005     20220621190117.0
024 7 _ |a 10.1093/neuonc/noy148.801
|2 doi
024 7 _ |a 1522-8517
|2 ISSN
024 7 _ |a 1523-5866
|2 ISSN
037 _ _ |a FZJ-2022-02459
082 _ _ |a 610
100 1 _ |a Ceccon, Garry
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a NIMG-79. EARLY TREATMENT RESPONSE ASSESSMENT USING O-(2-18F-FLUOROETHYL)-L-TYROSINE (FET) PET COMPARED TO MRI IN MALIGNANT GLIOMAS TREATED WITH ADJUVANT TEMOZOLOMIDE CHEMOTHERAPY
260 _ _ |c 2018
336 7 _ |a Text
|2 DataCite
336 7 _ |a Communication
|b comm
|m comm
|0 PUB:(DE-HGF)4
|s 1655805436_1548
|2 PUB:(DE-HGF)
336 7 _ |a MISC
|2 BibTeX
336 7 _ |a OTHER
|2 ORCID
336 7 _ |a Other
|2 DINI
336 7 _ |a Personal Communication
|0 4
|2 EndNote
520 _ _ |a AbstractBACKGROUNDThe goal of this prospective study was to compare the value of conventional MRI and O-(2-18F-fluoroethyl)-L-tyrosine (FET) PET for response assessment in patients with malignant glioma treated with first-line adjuvant temozolomide chemotherapy (TMZ).METHODSAfter biopsy/resection and completion of radiotherapy with concomitant temozolomide, 34 malignant glioma patients (glioblastoma, n=31; IDH-wildtype anaplastic astrocytoma, n=2; H3K27-mutated midline glioma, n=1) (age range, 20–66 years) were subsequently treated with adjuvant TMZ (5/28). FET-PET scans were performed at baseline and after 10–12 weeks. The first follow-up MRI after radiotherapy (9 ± 3 weeks) was compared with the early postoperative MRI. We obtained FET metabolic tumor volumes (MTV) and tumor/brain ratios (TBR). Threshold values of FET-PET parameters for treatment response were established by ROC analyses using the progression-free survival (PFS) ≤/>9 months as reference. MRI response assessment was based on RANO criteria. The predictive ability of FET-PET thresholds and MRI changes on early response assessment was evaluated subsequently concerning PFS using univariate survival estimates.RESULTSRelative TBR changes were not predictive for a PFS>9 months (P>0.05), whereas the absolute MTV at follow-up significantly predicted a PFS>9 months (P=0.016; threshold, 14.5 ml). The relative MTV change enabled the most significant PFS prediction. Responders defined by relative MTV changes (threshold, ≤0%) had a significantly 2-fold longer PFS than non-responders (16 vs. 8 months, P=0.003). RANO criteria at the first follow-up MRI after radiotherapy were not predictive for a PFS>9 months (P=0.260). CONCLUSIONS: FET-PET appears to be useful for identifying responders to adjuvant TMZ early after treatment initiation.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 1
|u fzj
700 1 _ |a Tscherpel, Caroline
|b 2
700 1 _ |a Dunkl, Veronika
|0 P:(DE-Juel1)156211
|b 3
700 1 _ |a Rapp, Marion
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Stoffels, Gabriele
|0 P:(DE-Juel1)131627
|b 5
|u fzj
700 1 _ |a Herrlinger, Ulrich
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rosen, Jurij
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wollring, Michael
|0 P:(DE-Juel1)190394
|b 8
|u fzj
700 1 _ |a Shah, Nadim J
|0 P:(DE-Juel1)131794
|b 9
|u fzj
700 1 _ |a Fink, Gereon R
|0 P:(DE-Juel1)131720
|b 10
|u fzj
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 11
|u fzj
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 12
|u fzj
773 _ _ |a 10.1093/neuonc/noy148.801
|0 PERI:(DE-600)2094060-9
|y 2018
|g Vol. 20, no. suppl_6, p. vi193 - vi193
|x 1523-5866
909 C O |o oai:juser.fz-juelich.de:908208
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131627
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)190394
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)131777
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)143792
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOLOGY : 2019
|d 2021-02-03
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NEURO-ONCOLOGY : 2019
|d 2021-02-03
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-Juel1)VDB1046
|k JARA-BRAIN
|l Jülich-Aachen Research Alliance - Translational Brain Medicine
|x 2
980 _ _ |a comm
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)VDB1046
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21