000908209 001__ 908209
000908209 005__ 20220923174122.0
000908209 0247_ $$2doi$$a10.1093/neuonc/noz126.267
000908209 0247_ $$2ISSN$$a1522-8517
000908209 0247_ $$2ISSN$$a1523-5866
000908209 0247_ $$2WOS$$aWOS:000493085900269
000908209 037__ $$aFZJ-2022-02460
000908209 082__ $$a610
000908209 1001_ $$0P:(DE-Juel1)145110$$aLohmann, P.$$b0$$ufzj
000908209 245__ $$aP14.32 Spatial discrepancies between FET PET and conventional MRI in patients with newly diagnosed glioblastoma
000908209 260__ $$c2019
000908209 3367_ $$2DataCite$$aText
000908209 3367_ $$0PUB:(DE-HGF)4$$2PUB:(DE-HGF)$$aCommunication$$bcomm$$mcomm$$s1655805449_15481
000908209 3367_ $$2BibTeX$$aMISC
000908209 3367_ $$2ORCID$$aOTHER
000908209 3367_ $$2DINI$$aOther
000908209 3367_ $$04$$2EndNote$$aPersonal Communication
000908209 520__ $$aAbstractBACKGROUNDIn patients with glioblastoma, the tissue showing contrast enhancement (CE) in MRI is usually the target for resection or radiotherapy. However, the solid tumor mass typically extends beyond the area of CE. Amino acid PET can detect tumor parts that show no CE. We systematically investigated tumor volumes delineated by amino acid PET and MRI in newly diagnosed, untreated glioblastoma patients.MATERIAL AND METHODSPreoperatively, 50 patients with subsequently neuropathologically confirmed glioblastoma underwent O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET, fluid-attenuated inversion recovery (FLAIR), and CE MRI. Areas of CE were manually delineated. FET PET tumor volumes were segmented using a tumor-to-brain ratio ≥ 1.6. The percentage of overlapping volumes (OV), as well as Dice and Jaccard spatial similarity coefficients (DSC; JSC), were calculated. FLAIR images were evaluated visually.RESULTSIn 86% of patients (n = 43), the FET PET tumor volume was significantly larger than the volume of CE (21.5 ± 14.3 mL vs. 9.4 ± 11.3 mL; P < 0.001). Forty patients (80%) showed both an increased uptake of FET and CE. In these 40 patients, the spatial similarity between FET and CE was low (mean DSC, 0.39 ± 0.21; mean JSC, 0.26 ± 0.16). Ten patients (20%) showed no CE, and one of these patients showed no FET uptake. In 10% of patients (n = 5), increased FET uptake was present outside of areas of FLAIR hyperintensity.CONCLUSIONOur results show that the metabolically active tumor volume delineated by FET PET is significantly larger than tumor volume delineated by CE. The data strongly suggest that the information derived from FET PET should be integrated into the management of newly diagnosed glioblastoma patients.FUNDINGThis work was supported by the Wilhelm-Sander Stiftung, Germany
000908209 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000908209 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908209 7001_ $$0P:(DE-HGF)0$$aStavrinou, P.$$b1
000908209 7001_ $$0P:(DE-HGF)0$$aLipke, K.$$b2
000908209 7001_ $$0P:(DE-Juel1)159312$$aBauer, E. K.$$b3$$ufzj
000908209 7001_ $$0P:(DE-HGF)0$$aCeccon, G.$$b4
000908209 7001_ $$aWerner, J.$$b5
000908209 7001_ $$0P:(DE-Juel1)131720$$aFink, G. R.$$b6$$ufzj
000908209 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b7$$ufzj
000908209 7001_ $$0P:(DE-Juel1)131777$$aLangen, K.$$b8$$ufzj
000908209 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, N.$$b9$$ufzj
000908209 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/noz126.267$$gVol. 21, no. Supplement_3, p. iii74 - iii74$$x1523-5866$$y2019
000908209 909CO $$ooai:juser.fz-juelich.de:908209$$pVDB
000908209 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b0$$kFZJ
000908209 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159312$$aForschungszentrum Jülich$$b3$$kFZJ
000908209 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b6$$kFZJ
000908209 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b7$$kFZJ
000908209 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b8$$kFZJ
000908209 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b9$$kFZJ
000908209 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000908209 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000908209 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000908209 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000908209 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-03
000908209 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000908209 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000908209 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-02-03
000908209 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000908209 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000908209 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2019$$d2021-02-03
000908209 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNEURO-ONCOLOGY : 2019$$d2021-02-03
000908209 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000908209 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000908209 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000908209 980__ $$acomm
000908209 980__ $$aVDB
000908209 980__ $$aI:(DE-Juel1)INM-4-20090406
000908209 980__ $$aI:(DE-Juel1)INM-11-20170113
000908209 980__ $$aI:(DE-Juel1)VDB1046
000908209 980__ $$aUNRESTRICTED