000908211 001__ 908211 000908211 005__ 20220923174125.0 000908211 0247_ $$2doi$$a10.1093/neuonc/noz126.064 000908211 0247_ $$2ISSN$$a1522-8517 000908211 0247_ $$2ISSN$$a1523-5866 000908211 0247_ $$2WOS$$aWOS:000493085900066 000908211 037__ $$aFZJ-2022-02462 000908211 082__ $$a610 000908211 1001_ $$0P:(DE-Juel1)145110$$aLohmann, P.$$b0 000908211 245__ $$aOS9.6 Diagnosis of pseudoprogression using FET PET radiomics 000908211 260__ $$c2019 000908211 3367_ $$2DataCite$$aText 000908211 3367_ $$0PUB:(DE-HGF)4$$2PUB:(DE-HGF)$$aCommunication$$bcomm$$mcomm$$s1655805465_1548 000908211 3367_ $$2BibTeX$$aMISC 000908211 3367_ $$2ORCID$$aOTHER 000908211 3367_ $$2DINI$$aOther 000908211 3367_ $$04$$2EndNote$$aPersonal Communication 000908211 520__ $$aAbstractBACKGROUNDRadiomics derived from different imaging modalities is gaining increasing interest in the field of neuro-oncology. Besides MRI, amino acid PET radiomics may also improve the to date challenging, clinically relevant diagnostic problem of differentiating pseudoprogression (PsP) from tumor progression (TP). To this end, we here explored the potential of O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET radiomics to discriminate between PsP and TP.MATERIAL AND METHODSThirty-five newly diagnosed IDH-wildtype glioblastoma patients with MRI findings suspicious for TP within 12 weeks after completion of chemoradiation with temozolomide underwent an additional dynamic FET PET scan. FET PET tumor volumes were segmented using a tumor-to-brain ratio (TBR) ≥ 1.6. The static PET parameters TBRmax and TBRmean, as well as the dynamic parameter time-to-peak (TTP), were calculated. For radiomics analysis, the number of datasets for model generation was increased using data augmentation techniques. Subsequently, 70 datasets were available for model generation. Prior to further processing, patients were randomly assigned to a discovery and a validation dataset in a ratio of 70/30, with balanced distribution of PsP and TP diagnoses. Forty-two radiomics features (4 shape-based, 6 first- and 32 second-order features) were obtained using the software LifeX (lifexsoft.org). Afterwards, a z-score transformation was performed for data normalization. For feature selection, recursive feature elimination using random forest regressors was performed. For the final model generation, the number of parameters was limited to three to avoid data overfitting. Different algorithms for model calculation were compared, and the diagnostic accuracy was assessed using leave-one-out cross-validation. Finally, the resulting models were applied to the validation dataset to evaluate model robustness.RESULTSEighteen patients were diagnosed with TP, and 17 patients had PsP. Diagnoses were based on a neuropathological confirmation or clinicoradiological follow-up (26% and 74%, respectively). The diagnostic accuracy of the best single FET PET parameter was 75% (TBRmax). Combining TBRmax and TTP increased the diagnostic accuracy to 83%. Other combinations of static and dynamic FET PET parameters, however, did not further increase the accuracy. The highest diagnostic accuracy of 92% was achieved by a three-parameter model combining the FET PET parameter TTP with two radiomics features. The model demonstrated its robustness in the validation dataset with a diagnostic accuracy of 86%.CONCLUSIONThe results suggest that FET PET radiomics improves the diagnostic accuracy for discerning PsP and TP considerably. Given the clinical significance of differentiating PSP and TP, prospective multicenter studies are warranted.FUNDINGWilhelm-Sander Stiftung and the DAAD GERSS Program, Germany 000908211 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0 000908211 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000908211 7001_ $$0P:(DE-HGF)0$$aElahmadawy, M. A.$$b1 000908211 7001_ $$aWerner, J.$$b2 000908211 7001_ $$0P:(DE-HGF)0$$aRapp, M.$$b3 000908211 7001_ $$0P:(DE-HGF)0$$aCeccon, G.$$b4 000908211 7001_ $$0P:(DE-Juel1)131720$$aFink, G. R.$$b5$$ufzj 000908211 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b6 000908211 7001_ $$0P:(DE-Juel1)131777$$aLangen, K.$$b7 000908211 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, N.$$b8 000908211 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/noz126.064$$gVol. 21, no. Supplement_3, p. iii19 - iii19$$x1523-5866$$y2019 000908211 909CO $$ooai:juser.fz-juelich.de:908211$$pVDB 000908211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b0$$kFZJ 000908211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b5$$kFZJ 000908211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b6$$kFZJ 000908211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b7$$kFZJ 000908211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b8$$kFZJ 000908211 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 000908211 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger 000908211 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03 000908211 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03 000908211 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-03 000908211 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03 000908211 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03 000908211 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-02-03 000908211 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03 000908211 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03 000908211 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2019$$d2021-02-03 000908211 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNEURO-ONCOLOGY : 2019$$d2021-02-03 000908211 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0 000908211 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1 000908211 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2 000908211 980__ $$acomm 000908211 980__ $$aVDB 000908211 980__ $$aI:(DE-Juel1)INM-4-20090406 000908211 980__ $$aI:(DE-Juel1)INM-11-20170113 000908211 980__ $$aI:(DE-Juel1)VDB1046 000908211 980__ $$aUNRESTRICTED