001     908217
005     20250129094250.0
020 _ _ |a 978-3-95806-666-3
024 7 _ |a 2128/32005
|2 Handle
037 _ _ |a FZJ-2022-02468
041 _ _ |a English
100 1 _ |a Nandakumaran, Nileena
|0 P:(DE-Juel1)176627
|b 0
|e Corresponding author
245 _ _ |a Self-assembly of Au-Fe3O4 dumbbell nanoparticles
|f - 2022-06-10
260 _ _ |a Jülich
|c 2022
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
300 _ _ |a xiv, 234
336 7 _ |a Output Types/Dissertation
|2 DataCite
336 7 _ |a Book
|0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|m book
336 7 _ |a DISSERTATION
|2 ORCID
336 7 _ |a PHDTHESIS
|2 BibTeX
336 7 _ |a Thesis
|0 2
|2 EndNote
336 7 _ |a Dissertation / PhD Thesis
|b phd
|m phd
|0 PUB:(DE-HGF)11
|s 1669103777_13815
|2 PUB:(DE-HGF)
336 7 _ |a doctoralThesis
|2 DRIVER
490 0 _ |a Schriften des Forschungszentrums Jülich Reihe Schlüsseltechnologien / Key Technologies
|v 264
502 _ _ |a Dissertation, RWTH Aachen University, 2022
|c RWTH Aachen University
|b Dissertation
|d 2022
520 _ _ |a A dumbbell nanoparticle (DBNP) system consists of an optically active Au seed particle on which a magnetic iron oxide nanoparticle (IONP) is heterogeneously grown. Control and manipulation of these multi-functional hetero-structures have applications as a dual-probe for biomedical imaging, in catalysis, sensing, optics, photonics and electronics. This thesis investigates the magnetic field-induced self-assembly in diverse DBNPs, with different sizes of Au and IONPs coated with oleic acid and oleylamine and dispersed in toluene. The effects of DBNPs’ complex morphology arecompared and contrasted to self-assembly studies on the IONPs’, which are singlephase spherical counterparts. Direct comparison simplifies the understanding of broad parameter space, including the size of the Au seed and the grown IONP, their size distribution, the thickness of surfactant coating around the nanoparticle, concentration in a dispersion, composition, magnetic structure, and strength of the magnetic field. A multiscale experimental approach is adopted to analyze the structure and magnetic properties to link it to the self-assembly phenomenon. Microscopy combinedwith local atomic structure obtained from synchrotron x-ray pair distribution function (xPDF) is used to reveal local crystal structure, crystallinity, size and distortion induced at the surface. Macroscopic magnetic measurements along with polarized neutron scattering reveal the magnetic behavior. Small-angle x-ray and neutron scattering (SAXS/SANS) measurements are exploited to observe and analyze selfassembling patterns. Real-space analysis of such patterns is achieved through reverse Monte Carlo (RMC) simulations. Spherical IONPs reversibly form 1D chains thatalign, straighten with magnetic field. On the other hand, 1D and 2D chains are observed with DBNPs in an applied magnetic field. The assemblies are classified into three categories based on the anisotropy in the 2D scattering pattern. Moreover, due to the unique morphology and orientation effects, the chains formed by DBNPs within these categories have head-to-tail or side-by-side arrangement. Shape-induced mechanisms governed by a dimensionless parameter are suggested to play a vital role in determining assembly formation.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS1-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-2: Small angle scattering diffractometer
|f NL3ao
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS2-20140101
|5 EXP:(DE-MLZ)KWS2-20140101
|6 EXP:(DE-MLZ)NL3ao-20140101
|x 1
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-3: Very small angle scattering diffractometer with focusing mirror
|f NL3auS
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS3-20140101
|5 EXP:(DE-MLZ)KWS3-20140101
|6 EXP:(DE-MLZ)NL3auS-20140101
|x 2
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e MARIA: Magnetic reflectometer with high incident angle
|f NL5N
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)MARIA-20140101
|5 EXP:(DE-MLZ)MARIA-20140101
|6 EXP:(DE-MLZ)NL5N-20140101
|x 3
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/908217/files/Schluesseltech_264.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/908217/files/Thesis-full-NileenaNandakumaran2022-embedd-finalized.pdf
909 C O |o oai:juser.fz-juelich.de:908217
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176627
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 1 _ |a FullTexts
980 _ _ |a phd
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-82)080009_20140620
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21