000908218 001__ 908218
000908218 005__ 20230123110627.0
000908218 0247_ $$2doi$$a10.1002/nbm.4225
000908218 0247_ $$2ISSN$$a0952-3480
000908218 0247_ $$2ISSN$$a1099-1492
000908218 0247_ $$2Handle$$a2128/31348
000908218 0247_ $$2altmetric$$aaltmetric:73174095
000908218 0247_ $$2pmid$$apmid:31865624
000908218 0247_ $$2WOS$$aWOS:000503702600001
000908218 037__ $$aFZJ-2022-02469
000908218 082__ $$a610
000908218 1001_ $$00000-0001-6199-2312$$aPawar, Kamlesh$$b0
000908218 245__ $$aSuppressing motion artefacts in MRI using an Inception‐ResNet network with motion simulation augmentation
000908218 260__ $$aNew York, NY$$bWiley$$c2022
000908218 3367_ $$2DRIVER$$aarticle
000908218 3367_ $$2DataCite$$aOutput Types/Journal article
000908218 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655894943_3711
000908218 3367_ $$2BibTeX$$aARTICLE
000908218 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908218 3367_ $$00$$2EndNote$$aJournal Article
000908218 520__ $$aThe suppression of motion artefacts from MR images is a challenging task. The purpose of this paper was to develop a standalone novel technique to suppress motion artefacts in MR images using a data-driven deep learning approach. A simulation framework was developed to generate motion-corrupted images from motion-free images using randomly generated motion profiles. An Inception-ResNet deep learning network architecture was used as the encoder and was augmented with a stack of convolution and upsampling layers to form an encoder-decoder network. The network was trained on simulated motion-corrupted images to identify and suppress those artefacts attributable to motion. The network was validated on unseen simulated datasets and real-world experimental motion-corrupted in vivo brain datasets. The trained network was able to suppress the motion artefacts in the reconstructed images, and the mean structural similarity (SSIM) increased from 0.9058 to 0.9338. The network was also able to suppress the motion artefacts from the real-world experimental dataset, and the mean SSIM increased from 0.8671 to 0.9145. The motion correction of the experimental datasets demonstrated the effectiveness of the motion simulation generation process. The proposed method successfully removed motion artefacts and outperformed an iterative entropy minimization method in terms of the SSIM index and normalized root mean squared error, which were 5–10% better for the proposed method. In conclusion, a novel, data-driven motion correction technique has been developed that can suppress motion artefacts from motion-corrupted MR images. The proposed technique is a standalone, post-processing method that does not interfere with data acquisition or reconstruction parameters, thus making it suitable for routine clinical practice.
000908218 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000908218 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908218 7001_ $$00000-0002-0173-6090$$aChen, Zhaolin$$b1
000908218 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b2$$ufzj
000908218 7001_ $$0P:(DE-HGF)0$$aEgan, Gary F.$$b3$$eCorresponding author
000908218 773__ $$0PERI:(DE-600)2002003-X$$a10.1002/nbm.4225$$gVol. 35, no. 4$$n4$$pe4225$$tNMR in biomedicine$$v35$$x0952-3480$$y2022
000908218 8564_ $$uhttps://juser.fz-juelich.de/record/908218/files/NMR%20in%20Biomedicine%20-%202019%20-%20Pawar%20-%20Suppressing%20motion%20artefacts%20in%20MRI%20using%20an%20Inception%E2%80%90ResNet%20network%20with%20motion.pdf$$yOpenAccess
000908218 909CO $$ooai:juser.fz-juelich.de:908218$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000908218 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b2$$kFZJ
000908218 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000908218 9141_ $$y2022
000908218 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000908218 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000908218 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000908218 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908218 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-11$$wger
000908218 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNMR BIOMED : 2021$$d2022-11-11
000908218 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000908218 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000908218 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000908218 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000908218 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000908218 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000908218 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000908218 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000908218 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2
000908218 980__ $$ajournal
000908218 980__ $$aVDB
000908218 980__ $$aUNRESTRICTED
000908218 980__ $$aI:(DE-Juel1)INM-4-20090406
000908218 980__ $$aI:(DE-Juel1)INM-11-20170113
000908218 980__ $$aI:(DE-Juel1)VDB1046
000908218 9801_ $$aFullTexts