000908220 001__ 908220 000908220 005__ 20240712113242.0 000908220 0247_ $$2doi$$a10.1016/j.ssi.2022.115978 000908220 0247_ $$2ISSN$$a0167-2738 000908220 0247_ $$2ISSN$$a1872-7689 000908220 0247_ $$2Handle$$a2128/31526 000908220 0247_ $$2WOS$$aWOS:000822940400001 000908220 037__ $$aFZJ-2022-02471 000908220 082__ $$a530 000908220 1001_ $$0P:(DE-Juel1)140525$$aKorte, Carsten$$b0$$eCorresponding author 000908220 245__ $$aReaction kinetics in the system Y2O3/Al2O3 – Use of an external electric field to control the product phase formation in a system forming multiple product phases 000908220 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022 000908220 3367_ $$2DRIVER$$aarticle 000908220 3367_ $$2DataCite$$aOutput Types/Journal article 000908220 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1658490576_6740 000908220 3367_ $$2BibTeX$$aARTICLE 000908220 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000908220 3367_ $$00$$2EndNote$$aJournal Article 000908220 520__ $$aThis study investigates the influence of an external electric field on the kinetics of a heterogeneous solid state reaction between Al2O3 and Y2O3. The reaction couples were prepared by means of pulsed laser deposition (PLD) by growing Y2O3 films on single crystalline alumina substrates with an (0001) orientation. The solid state reaction was performed at a temperature of 1400° (1673 K). Utilising attached platinum electrodes, an electric field of 350 V/mm was applied. The superposed field led to an ionic current through the reacting sample and modifies the individual growth kinetics of the three product phases/layers, Y3Al5O12 (YAG), YAlO3 (YAP) and Y4Al2O9 (YAM) The cross-sections of the reacted samples were characterised by means of SEM and XRD. Depending on the direction of the ionic current, the kinetics of the YAP phase formation in particular was strongly influenced. The general kinetics of a solid state reaction forming multiple product phases was analysed using linear transport theory. The effect of an electric field for controlling the product phase formation to prefer or to kinetically suppress the formation of a distinct phase is demonstrated. 000908220 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0 000908220 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000908220 7001_ $$0P:(DE-HGF)0$$aFranz, Bernhard$$b1 000908220 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2022.115978$$gVol. 383, p. 115978 -$$p115978 -$$tSolid state ionics$$v383$$x0167-2738$$y2022 000908220 8564_ $$uhttps://juser.fz-juelich.de/record/908220/files/Invoice_OAD0000218135.pdf 000908220 8564_ $$uhttps://juser.fz-juelich.de/record/908220/files/1-s2.0-S0167273822001278-main.pdf$$yOpenAccess 000908220 8767_ $$8OAD0000218135$$92022-06-17$$a1200182075$$d2022-06-24$$eHybrid-OA$$jZahlung erfolgt 000908220 909CO $$ooai:juser.fz-juelich.de:908220$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire 000908220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140525$$aForschungszentrum Jülich$$b0$$kFZJ 000908220 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)140525$$aRWTH Aachen$$b0$$kRWTH 000908220 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0 000908220 9141_ $$y2022 000908220 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-01-28 000908220 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000908220 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28 000908220 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000908220 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28 000908220 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-09$$wger 000908220 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09 000908220 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09 000908220 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09 000908220 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-09 000908220 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE IONICS : 2021$$d2022-11-09 000908220 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09 000908220 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-09 000908220 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-09 000908220 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-09 000908220 920__ $$lyes 000908220 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0 000908220 9801_ $$aAPC 000908220 9801_ $$aFullTexts 000908220 980__ $$ajournal 000908220 980__ $$aVDB 000908220 980__ $$aUNRESTRICTED 000908220 980__ $$aI:(DE-Juel1)IEK-14-20191129 000908220 980__ $$aAPC 000908220 981__ $$aI:(DE-Juel1)IET-4-20191129