001     908220
005     20240712113242.0
024 7 _ |a 10.1016/j.ssi.2022.115978
|2 doi
024 7 _ |a 0167-2738
|2 ISSN
024 7 _ |a 1872-7689
|2 ISSN
024 7 _ |a 2128/31526
|2 Handle
024 7 _ |a WOS:000822940400001
|2 WOS
037 _ _ |a FZJ-2022-02471
082 _ _ |a 530
100 1 _ |a Korte, Carsten
|0 P:(DE-Juel1)140525
|b 0
|e Corresponding author
245 _ _ |a Reaction kinetics in the system Y2O3/Al2O3 – Use of an external electric field to control the product phase formation in a system forming multiple product phases
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1658490576_6740
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This study investigates the influence of an external electric field on the kinetics of a heterogeneous solid state reaction between Al2O3 and Y2O3. The reaction couples were prepared by means of pulsed laser deposition (PLD) by growing Y2O3 films on single crystalline alumina substrates with an (0001) orientation. The solid state reaction was performed at a temperature of 1400° (1673 K). Utilising attached platinum electrodes, an electric field of 350 V/mm was applied. The superposed field led to an ionic current through the reacting sample and modifies the individual growth kinetics of the three product phases/layers, Y3Al5O12 (YAG), YAlO3 (YAP) and Y4Al2O9 (YAM) The cross-sections of the reacted samples were characterised by means of SEM and XRD. Depending on the direction of the ionic current, the kinetics of the YAP phase formation in particular was strongly influenced. The general kinetics of a solid state reaction forming multiple product phases was analysed using linear transport theory. The effect of an electric field for controlling the product phase formation to prefer or to kinetically suppress the formation of a distinct phase is demonstrated.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Franz, Bernhard
|0 P:(DE-HGF)0
|b 1
773 _ _ |a 10.1016/j.ssi.2022.115978
|g Vol. 383, p. 115978 -
|0 PERI:(DE-600)1500750-9
|p 115978 -
|t Solid state ionics
|v 383
|y 2022
|x 0167-2738
856 4 _ |u https://juser.fz-juelich.de/record/908220/files/Invoice_OAD0000218135.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/908220/files/1-s2.0-S0167273822001278-main.pdf
909 C O |o oai:juser.fz-juelich.de:908220
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)140525
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)140525
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2021-01-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOLID STATE IONICS : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-09
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21