000908252 001__ 908252
000908252 005__ 20230404094921.0
000908252 0247_ $$2doi$$a10.3389/fchem.2022.913419
000908252 0247_ $$2Handle$$a2128/31369
000908252 0247_ $$2altmetric$$aaltmetric:130174655
000908252 0247_ $$2pmid$$a35815219
000908252 0247_ $$2WOS$$aWOS:000827246200001
000908252 037__ $$aFZJ-2022-02486
000908252 082__ $$a540
000908252 1001_ $$0P:(DE-Juel1)179000$$aWohlgemuth, Marcus$$b0
000908252 245__ $$aActivity-Stability Relationships in Oxide Electrocatalysts for Water Electrolysis
000908252 260__ $$aLausanne$$bFrontiers Media$$c2022
000908252 3367_ $$2DRIVER$$aarticle
000908252 3367_ $$2DataCite$$aOutput Types/Journal article
000908252 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1671711377_17992
000908252 3367_ $$2BibTeX$$aARTICLE
000908252 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908252 3367_ $$00$$2EndNote$$aJournal Article
000908252 520__ $$aThe oxygen evolution reaction (OER) is one of the key kinetically limiting half reactions in electrochemical energy conversion. Model epitaxial catalysts have emerged as a platform to identify structure-function-relationships at the atomic level, a prerequisite to establish advanced catalyst design rules. Previous work identified an inverse relationship between activity and the stability of noble metal and oxide OER catalysts in both acidic and alkaline environments: The most active catalysts for the anodic OER are chemically unstable under reaction conditions leading to fast catalyst dissolution or amorphization, while the most stable catalysts lack sufficient activity. In this perspective, we discuss the role that epitaxial catalysts play in identifying this activity-stability-dilemma and introduce examples of how they can help overcome it. After a brief review of previously observed activity-stability-relationships, we will investigate the dependence of both activity and stability as a function of crystal facet. Our experiments reveal that the inverse relationship is not universal and does not hold for all perovskite oxides in the same manner. In fact, we find that facet-controlled epitaxial La0.6Sr0.4CoO3-δ catalysts follow the inverse relationship, while for LaNiO3-δ, the (111) facet is both the most active and the most stable. In addition, we show that both activity and stability can be enhanced simultaneously by moving from La-rich to Ni-rich termination layers. These examples show that the previously observed inverse activity-stability-relationship can be overcome for select materials and through careful control of the atomic arrangement at the solid-liquid interface. This realization re-opens the search for active and stable catalysts for water electrolysis that are made from earth-abundant elements. At the same time, these results showcase that additional stabilization via material design strategies will be required to induce a general departure from inverse stability-activity relationships among the transition metal oxide catalysts to ultimately grant access to the full range of available oxides for OER catalysis.
000908252 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000908252 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908252 7001_ $$0P:(DE-Juel1)172856$$aWeber, Moritz$$b1
000908252 7001_ $$0P:(DE-Juel1)187578$$aHeymann, Lisa$$b2
000908252 7001_ $$0P:(DE-HGF)0$$aBaeumer, Christoph$$b3
000908252 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b4$$eCorresponding author
000908252 773__ $$0PERI:(DE-600)2711776-5$$a10.3389/fchem.2022.913419$$gVol. 10, p. 913419$$p913419$$tFrontiers in Chemistry$$v10$$x2296-2646$$y2022
000908252 8564_ $$uhttps://juser.fz-juelich.de/record/908252/files/Invoice_RLNK504566042.pdf
000908252 8564_ $$uhttps://juser.fz-juelich.de/record/908252/files/Wohlgemuth_Frontiers_2022.pdf$$yOpenAccess
000908252 8767_ $$8RLNK504566042$$92022-04-28$$a1200180676$$d2022-05-04$$ePermission$$jZahlung erfolgt$$zFZJ-2022-02041
000908252 8767_ $$d2022-12-20$$eAPC$$jDeposit$$z1258 USD
000908252 909CO $$ooai:juser.fz-juelich.de:908252$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000908252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179000$$aForschungszentrum Jülich$$b0$$kFZJ
000908252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172856$$aForschungszentrum Jülich$$b1$$kFZJ
000908252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187578$$aForschungszentrum Jülich$$b2$$kFZJ
000908252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b4$$kFZJ
000908252 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000908252 9141_ $$y2022
000908252 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000908252 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908252 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000908252 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-04
000908252 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908252 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-04
000908252 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT CHEM : 2021$$d2022-11-30
000908252 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-30
000908252 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-30
000908252 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-13T10:38:39Z
000908252 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-13T10:38:39Z
000908252 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-13T10:38:39Z
000908252 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-30
000908252 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-30
000908252 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-30
000908252 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFRONT CHEM : 2021$$d2022-11-30
000908252 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000908252 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000908252 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000908252 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000908252 980__ $$ajournal
000908252 980__ $$aVDB
000908252 980__ $$aI:(DE-Juel1)PGI-7-20110106
000908252 980__ $$aI:(DE-82)080009_20140620
000908252 980__ $$aAPC
000908252 980__ $$aUNRESTRICTED
000908252 9801_ $$aAPC
000908252 9801_ $$aFullTexts