000908253 001__ 908253
000908253 005__ 20240712113006.0
000908253 0247_ $$2doi$$a10.1002/ente.202200343
000908253 0247_ $$2ISSN$$a2194-4288
000908253 0247_ $$2ISSN$$a2194-4296
000908253 0247_ $$2Handle$$a2128/31714
000908253 0247_ $$2WOS$$aWOS:000814186500001
000908253 037__ $$aFZJ-2022-02487
000908253 041__ $$aEnglish
000908253 082__ $$a620
000908253 1001_ $$00000-0003-2985-8484$$aBraun, Katharina$$b0$$eCorresponding author
000908253 245__ $$aEnergetics of Technical Integration of 2‐Propanol Fuel Cells: Thermodynamic and Current and Future Technical Feasibility
000908253 260__ $$aWeinheim [u.a.]$$bWiley-VCH$$c2022
000908253 3367_ $$2DRIVER$$aarticle
000908253 3367_ $$2DataCite$$aOutput Types/Journal article
000908253 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661318053_27783
000908253 3367_ $$2BibTeX$$aARTICLE
000908253 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908253 3367_ $$00$$2EndNote$$aJournal Article
000908253 520__ $$a2-Propanol/acetone is a promising liquid organic hydrogen carrier system for fuelcell reactions. Herein, six different concepts for a 2-propanol/acetone fuel cellsystem are evaluated in MATLAB simulation with respect to their thermodynamicintegration and technical feasibility. Four of the concepts use a direct 2-propanolfuel cell while the other two first release molecular hydrogen from 2-propanol andsubsequently use a hydrogen fuel cell. The presented liquid phase 2-propanol fuelcell concept is thermodynamically feasible but cannot be realized technicallyusing commercial Nafion membranes, due to membrane dissolution by the2-propanol/acetone/water fuel mixture. Gaseous 2-propanol fuel cells imply a highheating requirement for the evaporation of the fuel. A direct high-temperature fuelcell using 2-propanol is thermodynamically feasible because there is less water inthe overall system but is not technically feasible because of the esterification ofphosphoric acid. A very interesting option is the conversion of gaseous 2-propanolto pressurized hydrogen in an electrochemical pumping step followed by ahydrogen fuel cell, because here the waste heat of a sufficiently hot hydrogen fuelcell can drive the 2-propanol evaporation.
000908253 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000908253 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908253 7001_ $$0P:(DE-Juel1)185799$$aWolf, Moritz$$b1
000908253 7001_ $$0P:(DE-Juel1)185802$$aDe Oliveira, Ana$$b2
000908253 7001_ $$0P:(DE-Juel1)174308$$aPreuster, Patrick$$b3
000908253 7001_ $$0P:(DE-Juel1)162305$$aWasserscheid, Peter$$b4
000908253 7001_ $$0P:(DE-Juel1)165381$$aThiele, Simon$$b5
000908253 7001_ $$0P:(DE-Juel1)188717$$aWeiß, Lukas$$b6
000908253 7001_ $$0P:(DE-HGF)0$$aWensing, Michael$$b7
000908253 773__ $$0PERI:(DE-600)2700412-0$$a10.1002/ente.202200343$$gp. 2200343 -$$n8$$p2200343 -$$tEnergy technology$$v10$$x2194-4288$$y2022
000908253 8564_ $$uhttps://juser.fz-juelich.de/record/908253/files/Energy%20Tech%20-%202022%20-%20Braun%20-%20Energetics%20of%20Technical%20Integration%20of%202%E2%80%90Propanol%20Fuel%20Cells%20Thermodynamic%20and%20Current%20and.pdf$$yOpenAccess
000908253 909CO $$ooai:juser.fz-juelich.de:908253$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000908253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185799$$aForschungszentrum Jülich$$b1$$kFZJ
000908253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185802$$aForschungszentrum Jülich$$b2$$kFZJ
000908253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174308$$aForschungszentrum Jülich$$b3$$kFZJ
000908253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162305$$aForschungszentrum Jülich$$b4$$kFZJ
000908253 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165381$$aForschungszentrum Jülich$$b5$$kFZJ
000908253 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000908253 9141_ $$y2022
000908253 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000908253 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000908253 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000908253 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908253 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000908253 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY TECHNOL-GER : 2021$$d2022-11-12
000908253 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000908253 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000908253 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000908253 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000908253 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000908253 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-12
000908253 920__ $$lyes
000908253 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000908253 9801_ $$aFullTexts
000908253 980__ $$ajournal
000908253 980__ $$aVDB
000908253 980__ $$aUNRESTRICTED
000908253 980__ $$aI:(DE-Juel1)IEK-11-20140314
000908253 981__ $$aI:(DE-Juel1)IET-2-20140314