001     908253
005     20240712113006.0
024 7 _ |a 10.1002/ente.202200343
|2 doi
024 7 _ |a 2194-4288
|2 ISSN
024 7 _ |a 2194-4296
|2 ISSN
024 7 _ |a 2128/31714
|2 Handle
024 7 _ |a WOS:000814186500001
|2 WOS
037 _ _ |a FZJ-2022-02487
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Braun, Katharina
|0 0000-0003-2985-8484
|b 0
|e Corresponding author
245 _ _ |a Energetics of Technical Integration of 2‐Propanol Fuel Cells: Thermodynamic and Current and Future Technical Feasibility
260 _ _ |a Weinheim [u.a.]
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1661318053_27783
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a 2-Propanol/acetone is a promising liquid organic hydrogen carrier system for fuelcell reactions. Herein, six different concepts for a 2-propanol/acetone fuel cellsystem are evaluated in MATLAB simulation with respect to their thermodynamicintegration and technical feasibility. Four of the concepts use a direct 2-propanolfuel cell while the other two first release molecular hydrogen from 2-propanol andsubsequently use a hydrogen fuel cell. The presented liquid phase 2-propanol fuelcell concept is thermodynamically feasible but cannot be realized technicallyusing commercial Nafion membranes, due to membrane dissolution by the2-propanol/acetone/water fuel mixture. Gaseous 2-propanol fuel cells imply a highheating requirement for the evaporation of the fuel. A direct high-temperature fuelcell using 2-propanol is thermodynamically feasible because there is less water inthe overall system but is not technically feasible because of the esterification ofphosphoric acid. A very interesting option is the conversion of gaseous 2-propanolto pressurized hydrogen in an electrochemical pumping step followed by ahydrogen fuel cell, because here the waste heat of a sufficiently hot hydrogen fuelcell can drive the 2-propanol evaporation.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wolf, Moritz
|0 P:(DE-Juel1)185799
|b 1
700 1 _ |a De Oliveira, Ana
|0 P:(DE-Juel1)185802
|b 2
700 1 _ |a Preuster, Patrick
|0 P:(DE-Juel1)174308
|b 3
700 1 _ |a Wasserscheid, Peter
|0 P:(DE-Juel1)162305
|b 4
700 1 _ |a Thiele, Simon
|0 P:(DE-Juel1)165381
|b 5
700 1 _ |a Weiß, Lukas
|0 P:(DE-Juel1)188717
|b 6
700 1 _ |a Wensing, Michael
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.1002/ente.202200343
|g p. 2200343 -
|0 PERI:(DE-600)2700412-0
|n 8
|p 2200343 -
|t Energy technology
|v 10
|y 2022
|x 2194-4288
856 4 _ |u https://juser.fz-juelich.de/record/908253/files/Energy%20Tech%20-%202022%20-%20Braun%20-%20Energetics%20of%20Technical%20Integration%20of%202%E2%80%90Propanol%20Fuel%20Cells%20Thermodynamic%20and%20Current%20and.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:908253
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185799
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)185802
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)174308
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)162305
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)165381
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY TECHNOL-GER : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21