000908265 001__ 908265
000908265 005__ 20230301072459.0
000908265 0247_ $$2doi$$a10.1007/s42729-021-00730-7
000908265 0247_ $$2ISSN$$a0717-635X
000908265 0247_ $$2ISSN$$a0718-2791
000908265 0247_ $$2ISSN$$a0718-9508
000908265 0247_ $$2ISSN$$a0718-9516
000908265 0247_ $$2Handle$$a2128/31383
000908265 0247_ $$2WOS$$aWOS:000734712900001
000908265 037__ $$aFZJ-2022-02499
000908265 082__ $$a570
000908265 1001_ $$0P:(DE-Juel1)173902$$aCao, Xinyue$$b0$$eCorresponding author
000908265 245__ $$aHigh Carbon Amendments Increase Nitrogen Retention in Soil After Slurry Application—an Incubation Study with Silty Loam Soil
000908265 260__ $$a[Cham]$$bSpringer International Publishing$$c2022
000908265 3367_ $$2DRIVER$$aarticle
000908265 3367_ $$2DataCite$$aOutput Types/Journal article
000908265 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1656390266_2605
000908265 3367_ $$2BibTeX$$aARTICLE
000908265 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908265 3367_ $$00$$2EndNote$$aJournal Article
000908265 520__ $$aExcess nitrogen (N) after animal slurry application is a persistent problem of intensive agriculture, with consequences such as environmental pollution by ammonia (NH3) and nitrous oxide (N2O) emissions and nitrate (NO3−) leaching. High-carbon organic soil amendments (HCAs) with a large C:N ratio have shown the potential of mitigating unintended N losses from soil. To reduce gaseous and leaching N losses after the application of slurry, a laboratory incubation study was conducted with silt loam soil. We tested the potential of three different types of HCA—wheat straw, sawdust, and leonardite (application rate 50 g C L−1 slurry for each of the three HCAs)—to mitigate N loss after amendment of soil with pig and cattle slurry using two common application modes (slurry and HCA mixed overnight with subsequent addition to soil vs. sequential addition) at an application rate equivalent to 80 kg N ha−1. Compared to the control with only soil and slurry, the addition of leonardite reduced the NH3 emissions of both slurries by 32–64%. Leonardite also reduced the total N2O emissions by 33–58%. Wheat straw reduced N2O emissions by 40–46%, but had no effect on NH3 emission. 15 N labeling showed that the application of leonardite was associated with the highest N retention in soil (24% average slurry N recovery), followed by wheat straw (20% average slurry N recovery). The mitigation of N loss was also observed for sawdust, although the effect was less consistent compared with leonardite and wheat straw. Mixing the slurry and HCA overnight tended to reduce N losses, although the effect was not consistent across all treatments. In conclusion, leonardite improved soil N retention more effectively than wheat straw and sawdust.
000908265 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000908265 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908265 7001_ $$0P:(DE-Juel1)167469$$aReichel, Rüdiger$$b1
000908265 7001_ $$0P:(DE-Juel1)129557$$aWissel, Holger$$b2
000908265 7001_ $$0P:(DE-Juel1)129488$$aKummer, Sirgit$$b3
000908265 7001_ $$0P:(DE-Juel1)142357$$aBrüggemann, Nicolas$$b4
000908265 773__ $$0PERI:(DE-600)2611093-3$$a10.1007/s42729-021-00730-7$$gVol. 22, no. 2, p. 1277 - 1289$$n2$$p1277 - 1289$$tJournal of soil science and plant nutrition$$v22$$x0717-635X$$y2022
000908265 8564_ $$uhttps://juser.fz-juelich.de/record/908265/files/Cao2022_Article_HighCarbonAmendmentsIncreaseNi.pdf$$yOpenAccess
000908265 8767_ $$d2022-12-13$$eHybrid-OA$$jDEAL
000908265 909CO $$ooai:juser.fz-juelich.de:908265$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000908265 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173902$$aForschungszentrum Jülich$$b0$$kFZJ
000908265 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167469$$aForschungszentrum Jülich$$b1$$kFZJ
000908265 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129557$$aForschungszentrum Jülich$$b2$$kFZJ
000908265 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129488$$aForschungszentrum Jülich$$b3$$kFZJ
000908265 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142357$$aForschungszentrum Jülich$$b4$$kFZJ
000908265 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000908265 9141_ $$y2022
000908265 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000908265 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908265 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ SOIL SCI PLANT NUT : 2019$$d2021-02-02
000908265 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000908265 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-02-02$$wger
000908265 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000908265 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000908265 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908265 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2021-02-02
000908265 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000908265 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000908265 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000908265 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000908265 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000908265 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000908265 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000908265 980__ $$ajournal
000908265 980__ $$aVDB
000908265 980__ $$aUNRESTRICTED
000908265 980__ $$aI:(DE-Juel1)IBG-3-20101118
000908265 980__ $$aAPC
000908265 9801_ $$aAPC
000908265 9801_ $$aFullTexts