001 | 908268 | ||
005 | 20230331201822.0 | ||
024 | 7 | _ | |a 10.1093/jxb/erac184 |2 doi |
024 | 7 | _ | |a 0022-0957 |2 ISSN |
024 | 7 | _ | |a 1460-2431 |2 ISSN |
024 | 7 | _ | |a 35512445 |2 pmid |
024 | 7 | _ | |a WOS:000813473600001 |2 WOS |
024 | 7 | _ | |a 2128/34227 |2 Handle |
037 | _ | _ | |a FZJ-2022-02502 |
082 | _ | _ | |a 580 |
100 | 1 | _ | |a Kuang, Weiqi |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a N-dependent dynamics of root growth and nitrate and ammonium uptake are altered by the bacterium Herbaspirillum seropedicae in the cereal model Brachypodium distachyon |
260 | _ | _ | |a Oxford |c 2022 |b Oxford Univ. Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1680246325_32589 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Nitrogen (N) fixation in cereals by root-associated bacteria is a promising solution for reducing use of chemical N fertilizers in agriculture. However, plant and bacterial responses are unpredictable across environments. We hypothesized that cereal responses to N-fixing bacteria are dynamic, depending on N supply and time. To quantify the dynamics, a gnotobiotic, fabricated ecosystem (EcoFAB) was adapted to analyse N mass balance, to image shoot and root growth, and to measure gene expression of Brachypodium distachyon inoculated with the N-fixing bacterium Herbaspirillum seropedicae. Phenotyping throughput of EcoFAB-N was 25–30 plants h−1 with open software and imaging systems. Herbaspirillum seropedicae inoculation of B. distachyon shifted root and shoot growth, nitrate versus ammonium uptake, and gene expression with time; directions and magnitude depended on N availability. Primary roots were longer and root hairs shorter regardless of N, with stronger changes at low N. At higher N, H. seropedicae provided 11% of the total plant N that came from sources other than the seed or the nutrient solution. The time-resolved phenotypic and molecular data point to distinct modes of action: at 5 mM NH4NO3 the benefit appears through N fixation, while at 0.5 mM NH4NO3 the mechanism appears to be plant physiological, with H. seropedicae promoting uptake of N from the root medium.Future work could fine-tune plant and root-associated microorganisms to growth and nutrient dynamics. |
536 | _ | _ | |a 2171 - Biological and environmental resources for sustainable use (POF4-217) |0 G:(DE-HGF)POF4-2171 |c POF4-217 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
650 | 2 | 7 | |a Biology |0 V:(DE-MLZ)SciArea-160 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Basic research |0 V:(DE-MLZ)GC-2004-2016 |2 V:(DE-HGF) |x 0 |
700 | 1 | _ | |a Sanow, Stefan |0 P:(DE-Juel1)178056 |b 1 |
700 | 1 | _ | |a Kelm, Jana M |0 P:(DE-Juel1)164816 |b 2 |
700 | 1 | _ | |a Müller Linow, Mark |0 P:(DE-Juel1)142555 |b 3 |
700 | 1 | _ | |a Andeer, Peter |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Kohlheyer, Dietrich |0 P:(DE-Juel1)140195 |b 5 |
700 | 1 | _ | |a Northen, Trent |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Vogel, John P |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Watt, Michelle |0 P:(DE-Juel1)166460 |b 8 |
700 | 1 | _ | |a Arsova, Borjana |0 P:(DE-Juel1)165155 |b 9 |e Corresponding author |
773 | _ | _ | |a 10.1093/jxb/erac184 |g p. erac184 |0 PERI:(DE-600)1466717-4 |n 15 |p 5306–5321 |t The journal of experimental botany |v 73 |y 2022 |x 0022-0957 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/908268/files/Invoice_E15490324.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/908268/files/Kuang%20et%20al_20220306_lineNr_CLEAN.docx |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/908268/files/Kuang%20et%20al_Figures_20220306_clean.pdf |
856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/908268/files/S1_Kuang%20et%20al_Supplemental%20Figures%20and%20Tables_20220306_clean.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/908268/files/erac184.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:908268 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)178056 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)164816 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)142555 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)140195 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)165155 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Erde und Umwelt |l Erde im Wandel – Unsere Zukunft nachhaltig gestalten |1 G:(DE-HGF)POF4-210 |0 G:(DE-HGF)POF4-217 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-200 |4 G:(DE-HGF)POF |v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten |9 G:(DE-HGF)POF4-2171 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2022-11-11 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J EXP BOT : 2021 |d 2022-11-11 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-11 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-11 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J EXP BOT : 2021 |d 2022-11-11 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2022-11-11 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-11 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-2-20101118 |k IBG-2 |l Pflanzenwissenschaften |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IBG-1-20101118 |k IBG-1 |l Biotechnologie |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IBG-2-20101118 |
980 | _ | _ | |a I:(DE-Juel1)IBG-1-20101118 |
980 | _ | _ | |a APC |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|