000908298 001__ 908298
000908298 005__ 20240619092059.0
000908298 0247_ $$2doi$$a10.3390/ijms23136969
000908298 0247_ $$2ISSN$$a1422-0067
000908298 0247_ $$2ISSN$$a1661-6596
000908298 0247_ $$2Handle$$a2128/31456
000908298 0247_ $$2pmid$$a35805997
000908298 0247_ $$2WOS$$aWOS:000823509300001
000908298 037__ $$aFZJ-2022-02518
000908298 082__ $$a540
000908298 1001_ $$0P:(DE-Juel1)174525$$aHaris, Luman$$b0$$ufzj
000908298 245__ $$aVariation of Structural and Dynamical Flexibility of Myelin Basic Protein in Response to Guanidinium Chloride
000908298 260__ $$aBasel$$bMolecular Diversity Preservation International$$c2022
000908298 3367_ $$2DRIVER$$aarticle
000908298 3367_ $$2DataCite$$aOutput Types/Journal article
000908298 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1657275715_3503
000908298 3367_ $$2BibTeX$$aARTICLE
000908298 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908298 3367_ $$00$$2EndNote$$aJournal Article
000908298 520__ $$aMyelin basic protein (MBP) is intrinsically disordered in solution and is considered as a conformationally flexible biomacromolecule. Here, we present a study on perturbation of MBP structure and dynamics by the denaturant guanidinium chloride (GndCl) using small-angle scattering and neutron spin–echo spectroscopy (NSE). A concentration of 0.2 M GndCl causes charge screening in MBP resulting in a compact, but still disordered protein conformation, while GndCl concentrations above 1 M lead to structural expansion and swelling of MBP. NSE data of MBP were analyzed using the Zimm model with internal friction (ZIF) and normal mode (NM) analysis. A significant contribution of internal friction was found in compact states of MBP that approaches a non-vanishing internal friction relaxation time of approximately 40 ns at high GndCl concentrations. NM analysis demonstrates that the relaxation rates of internal modes of MBP remain unaffected by GndCl, while structural expansion due to GndCl results in increased amplitudes of internal motions. Within the model of the Brownian oscillator our observations can be rationalized by a loss of friction within the protein due to structural expansion. Our study highlights the intimate coupling of structural and dynamical plasticity of MBP, and its fundamental difference to the behavior of ideal polymers in solution.
000908298 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000908298 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000908298 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908298 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000908298 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x1
000908298 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000908298 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000908298 693__ $$0EXP:(DE-MLZ)J-NSE-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)J-NSE-20140101$$6EXP:(DE-MLZ)NL2ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eJ-NSE: Neutron spin-echo spectrometer$$fNL2ao$$x1
000908298 7001_ $$0P:(DE-Juel1)130542$$aBiehl, Ralf$$b1
000908298 7001_ $$0P:(DE-Juel1)172746$$aDulle, Martin$$b2$$ufzj
000908298 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b3
000908298 7001_ $$0P:(DE-Juel1)130718$$aHolderer, Olaf$$b4
000908298 7001_ $$00000-0001-7178-6467$$aHoffmann, Ingo$$b5
000908298 7001_ $$0P:(DE-Juel1)140278$$aStadler, Andreas M.$$b6$$eCorresponding author
000908298 773__ $$0PERI:(DE-600)2019364-6$$a10.3390/ijms23136969$$gVol. 23, no. 13, p. 6969 -$$n13$$p6969 -$$tInternational journal of molecular sciences$$v23$$x1422-0067$$y2022
000908298 8564_ $$uhttps://juser.fz-juelich.de/record/908298/files/ijms-23-06969.pdf$$yOpenAccess
000908298 909CO $$ooai:juser.fz-juelich.de:908298$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000908298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174525$$aForschungszentrum Jülich$$b0$$kFZJ
000908298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130542$$aForschungszentrum Jülich$$b1$$kFZJ
000908298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172746$$aForschungszentrum Jülich$$b2$$kFZJ
000908298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b3$$kFZJ
000908298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130718$$aForschungszentrum Jülich$$b4$$kFZJ
000908298 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140278$$aForschungszentrum Jülich$$b6$$kFZJ
000908298 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000908298 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000908298 9141_ $$y2022
000908298 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000908298 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908298 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000908298 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000908298 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908298 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000908298 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-09-04T08:27:04Z
000908298 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-09-04T08:27:04Z
000908298 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-09-04T08:27:04Z
000908298 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-25
000908298 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-25
000908298 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J MOL SCI : 2021$$d2022-11-25
000908298 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000908298 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000908298 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000908298 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000908298 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000908298 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J MOL SCI : 2021$$d2022-11-25
000908298 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000908298 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x1
000908298 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
000908298 9201_ $$0I:(DE-Juel1)IBI-8-20200312$$kIBI-8$$lNeutronenstreuung und biologische Materie$$x3
000908298 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x4
000908298 9801_ $$aFullTexts
000908298 980__ $$ajournal
000908298 980__ $$aVDB
000908298 980__ $$aUNRESTRICTED
000908298 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000908298 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000908298 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000908298 980__ $$aI:(DE-Juel1)IBI-8-20200312
000908298 980__ $$aI:(DE-588b)4597118-3
000908298 981__ $$aI:(DE-Juel1)JCNS-1-20110106