001     908323
005     20240711085557.0
024 7 _ |a 2128/31400
|2 Handle
037 _ _ |a FZJ-2022-02542
041 _ _ |a English
100 1 _ |a Ivanova, Mariya
|0 P:(DE-Juel1)129617
|b 0
|e Corresponding author
|u fzj
111 2 _ |a 6th International Workshop Prospects on Proton Ceramic Cells
|g PPCC 2022
|c Dijon
|d 2022-06-07 - 2022-06-10
|w France
245 _ _ |a Effect of sintering conditions on the phase and microstructure features of Ba1.015Zr0.8-xCe0.2YxO3-δ proton conducting cell components
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1656497924_17651
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Ceramic proton conductors of the type Ba1.015Zr0.8-xCe0.2YxO3-δ (BZCY) where x = 0.175 and 0.24 were prepared via a modified reactive solid state synthesis route from stoichiometric mixtures of BaCO3 and the corresponding oxides under addition of minor amount of NiO as a sintering aid. Ba excess of 1.5 mol. % was added to compensate possible Ba evaporation during the thermal treatments as reported previously. From the pre-heated powders half-cell assemblies consisting of a BZCY solid electrolyte layer on BZCY:NiO anode support were prepared via tape casting and compared after sintering at various conditions to reference pellets with equivalent compositions and prepared under similar conditions. The aim was to correlate the phase and microstructure features of the BZCY electrolyte layer to the presence of a supporting NiO rich layer and thus providing optimal parameters for sintering of such bi-layers with homogeneous phase composition, i.e. minimization of the secondary phase shares, and finally, proving the hypothesis that the BZCY:NiO anode composite is potentially much stronger sink for BaO than the gas phase.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 0
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Schäfer, Laura-Alena
|0 P:(DE-Juel1)187594
|b 1
|u fzj
700 1 _ |a Zeng, Yuan
|0 P:(DE-Juel1)190723
|b 2
|u fzj
700 1 _ |a Deibert, Wendelin
|0 P:(DE-Juel1)144923
|b 3
|u fzj
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 4
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 5
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/908323/files/Ivanova%20PPCC%202022%20Dijon.2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:908323
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)187594
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)190723
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144923
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21