000908326 001__ 908326
000908326 005__ 20250129092503.0
000908326 0247_ $$2Handle$$a2128/31761
000908326 0247_ $$2URN$$aurn:nbn:de:0001-2022083122
000908326 020__ $$a978-3-95806-631-1
000908326 037__ $$aFZJ-2022-02545
000908326 1001_ $$0P:(DE-Juel1)168167$$aNielinger, Dennis$$b0$$eCorresponding author$$ufzj
000908326 245__ $$aIntegrated Control Electronics for Qubits at Ultra Low Temperature$$f- 2022-08-31
000908326 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2022
000908326 300__ $$axviii, 94, xix-xxvi
000908326 3367_ $$2DataCite$$aOutput Types/Dissertation
000908326 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000908326 3367_ $$2ORCID$$aDISSERTATION
000908326 3367_ $$2BibTeX$$aPHDTHESIS
000908326 3367_ $$02$$2EndNote$$aThesis
000908326 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1661921798_5811
000908326 3367_ $$2DRIVER$$adoctoralThesis
000908326 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Information / Information$$v80
000908326 502__ $$aDissertation, Univ. Duisburg, 2022$$bDissertation$$cUniv. Duisburg$$d2022
000908326 520__ $$aQuantum computing has shown an increased interest in recent years. The basis of a quantum computer is a qubit, which is the quantum equivalent of a classical bit. Common qubit are only viable in a cryogenic environment and need electrical connections tooperate. For this, it is needed to solve the problem to bringing more qubits into the cryostat and connecting the quantum and the macroscopic world. The number of qubits per cryostat is limited just by the amount of interconnects and cooling power of the cryostat even if one neglect the other challenges which come with the increasing number of qubits integrated on one chip. This work investigates the performance of different integrated circuit architectures for operating at low temperature. The goal is to place the control electronics in close vicinity of the qubit itself and replace parts of the classical control electronics which by now are located at room temperature. The particular circuits investigated and implemented focus on the needs for operating a GaAs singlet triplet qubit. These qubits need frequency synthesis, biasing and readout circuitry to operate. This work includes the implementation of a digital controlled oscillator operating at a frequency of 500 MHz, a voltage controlled oscillator operating at 20 GHz and a 8-bit digital to analog converter with a sample rate of 250 MHz. The circuitry was fabricated on a 2 x 2 mm2 65 nm chip. The performance of the circuitry is evaluated at room temperature and in a closed-cycle Gifford-McMahon cryostat down to temperatures as low as 6 K. The results are compared and cryogenic effects are discussed
000908326 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000908326 8564_ $$uhttps://juser.fz-juelich.de/record/908326/files/Information_80.pdf$$yOpenAccess
000908326 909CO $$ooai:juser.fz-juelich.de:908326$$pdnbdelivery$$pVDB$$pdriver$$purn$$popen_access$$popenaire
000908326 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908326 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908326 9141_ $$y2022
000908326 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168167$$aForschungszentrum Jülich$$b0$$kFZJ
000908326 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000908326 920__ $$lyes
000908326 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000908326 9801_ $$aFullTexts
000908326 980__ $$aphd
000908326 980__ $$aVDB
000908326 980__ $$aUNRESTRICTED
000908326 980__ $$abook
000908326 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000908326 981__ $$aI:(DE-Juel1)PGI-4-20110106