001     908363
005     20230127125340.0
024 7 _ |a 2128/31419
|2 Handle
037 _ _ |a FZJ-2022-02565
041 _ _ |a English
100 1 _ |a Gong, Bing
|0 P:(DE-Juel1)177767
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Platform for Advanced Scientific Computing Conference 2022
|g PASC2022
|c Basel
|d 2022-06-27 - 2022-06-30
|w Switzerland
245 _ _ |a Statistical Downscaling of Surface Temperature and Precipitation with Deep Neural Networks
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1656674930_12168
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a In light of the success of superresolution (SR) applications in computer vision, recent studies have started to develop statistical downscaling methods for meteorological data based on deep neural networks (DNNs). DNNs are attractive, because they are computationally cheap, once they are trained.In this study, deep neural networks are developed to downscale hourly 2 meter temperature and precipitation over the complex terrain of Central Europe. Our approach is based on advanced generative adversarial networks (GANs) and transformer networks. The merit of this choice is that GANs encourage the generator to preserve the strong spatial variability from the data, while the transformer can capture the temporal dependencies. The experiments are designed to generate high-resolution temperature (0.1°) from low resolution (0.8°), and time-evolving high-resolution precipitation (1 km) from low resolution (4 km/8 km). The DNNs are fed with several relevant static and dynamic predictors and comprehensively evaluated by grid point-level errors, and error metrics for spatial variability and the generated probability distribution. Our results motivate the further development of DNNs that can be potentially leveraged to downscale other challenging Earth system data such as cloud cover or wind in operational workflows.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a MAELSTROM - MAchinE Learning for Scalable meTeoROlogy and cliMate (955513)
|0 G:(EU-Grant)955513
|c 955513
|f H2020-JTI-EuroHPC-2019-1
|x 1
536 _ _ |a Earth System Data Exploration (ESDE)
|0 G:(DE-Juel-1)ESDE
|c ESDE
|x 2
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 3
700 1 _ |a Langguth, Michael
|0 P:(DE-Juel1)180790
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Ji, Yan
|0 P:(DE-Juel1)187069
|b 2
|u fzj
700 1 _ |a Mozaffari, Amirpasha
|0 P:(DE-Juel1)166264
|b 3
|u fzj
700 1 _ |a Mache, Karim
|0 P:(DE-Juel1)187076
|b 4
|u fzj
700 1 _ |a Schultz, Martin
|0 P:(DE-Juel1)6952
|b 5
|u fzj
856 4 _ |u https://pasc22.pasc-conference.org/program/schedule/presentation/?id=msa221&sess=sess127
856 4 _ |u https://juser.fz-juelich.de/record/908363/files/2022-06-26_PASC_downscaling_Gong%2BLangguth.pptx
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:908363
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177767
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)180790
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)187069
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166264
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)187076
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21