001     908364
005     20231023093631.0
024 7 _ |a 10.1088/2634-4386/ac6d04
|2 doi
024 7 _ |a 2128/31394
|2 Handle
024 7 _ |a altmetric:127839412
|2 altmetric
024 7 _ |a WOS:001064078600001
|2 WOS
037 _ _ |a FZJ-2022-02566
082 _ _ |a 621.3
100 1 _ |a Bengel, Christopher
|0 P:(DE-Juel1)188159
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Reliability aspects of binary vector-matrix-multiplications using ReRAM devices
260 _ _ |a Bristol
|c 2022
|b IOP Publishing Ltd.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1674041127_28599
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Computation-in-memory using memristive devices is a promising approach to overcome the performance limitations of conventional computing architectures introduced by the von Neumann bottleneck which are also known as memory wall and power wall. It has been shown that accelerators based on memristive devices can deliver higher energy efficiencies and data throughputs when compared with conventional architectures. In the vast multitude of memristive devices, bipolar resistive switches based on the valence change mechanism (VCM) are particularly interesting due to their low power operation, non-volatility, high integration density and their CMOS compatibility. While a wide range of possible applications is considered, many of them such as artificial neural networks heavily rely on vector-matrix-multiplications (VMMs) as a mathematical operation. These VMMs are made up of large numbers of multiplication and accumulation (MAC) operations. The MAC operation can be realised using memristive devices in an analog fashion using Ohm's law and Kirchhoff's law. However, VCM devices exhibit a range of non-idealities, affecting the VMM performance, which in turn impacts the overall accuracy of the application. Those non-idealities can be classified into time-independent (programming variability) and time-dependent (read disturb and read noise). Additionally, peripheral circuits such as analog to digital converters can introduce errors during the digitalization. In this work, we experimentally and theoretically investigate the impact of device- and circuit-level effects on the VMM in a VCM crossbars. Our analysis shows that the variability of the low resistive state plays a key role and that reading in the RESET direction should be favored to reading in the SET direction.
536 _ _ |a 5233 - Memristive Materials and Devices (POF4-523)
|0 G:(DE-HGF)POF4-5233
|c POF4-523
|f POF IV
|x 0
536 _ _ |a BMBF-16ME0398K - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0398K)
|0 G:(DE-82)BMBF-16ME0398K
|c BMBF-16ME0398K
|x 1
536 _ _ |a BMBF-16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)
|0 G:(DE-82)BMBF-16ME0399
|c BMBF-16ME0399
|x 2
536 _ _ |a MNEMOSENE - Computation-in-memory architecture based on resistive devices (780215)
|0 G:(EU-Grant)780215
|c 780215
|f H2020-ICT-2017-1
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Mohr, Johannes
|0 0000-0003-0815-3047
|b 1
700 1 _ |a Wiefels, Stefan
|0 P:(DE-Juel1)187229
|b 2
700 1 _ |a Singh, Abhairaj
|0 0000-0002-2729-7057
|b 3
700 1 _ |a Gebregiorgis, Anteneh
|0 0000-0001-5909-4927
|b 4
700 1 _ |a Bishnoi, Rajendra
|0 0000-0002-1590-0365
|b 5
700 1 _ |a Hamdioui, Said
|0 0000-0002-8961-0387
|b 6
700 1 _ |a Waser, Rainer
|0 P:(DE-Juel1)131022
|b 7
700 1 _ |a Wouters, Dirk
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 9
773 _ _ |a 10.1088/2634-4386/ac6d04
|g Vol. 2, no. 3, p. 034001 -
|0 PERI:(DE-600)3099608-9
|n 3
|p 034001 -
|t Neuromorphic computing and engineering
|v 2
|y 2022
|x 2634-4386
856 4 _ |u https://juser.fz-juelich.de/record/908364/files/Bengel_2022_Neuromorph._Comput._Eng._2_034001.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:908364
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)188159
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)187229
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131022
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)158062
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5233
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-13T13:51:14Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-13T13:51:14Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Double blind peer review, Open peer review
|d 2021-10-13T13:51:14Z
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-10-20170113
|k PGI-10
|l JARA Institut Green IT
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-10-20170113
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21