001     908373
005     20250129094258.0
024 7 _ |a 10.1002/admi.202200461
|2 doi
024 7 _ |a 2128/31579
|2 Handle
024 7 _ |a altmetric:130366462
|2 altmetric
024 7 _ |a WOS:000816842400001
|2 WOS
037 _ _ |a FZJ-2022-02568
082 _ _ |a 600
100 1 _ |a Glöß, Maria
|0 P:(DE-Juel1)172893
|b 0
245 _ _ |a Exploring the Ligand Functionality, Electronic Band Gaps, and Switching Characteristics of Single Wells–Dawson‐Type Polyoxometalates on Gold
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1658917559_15902
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The miniaturization, high performance, energy efficiency, and new added functionalities are the essential drivers of modern information data storage and processing technologies. Polyoxometalates (POMs) characterized by atomically well-defined structures with discrete energy levels and the ability to undergo redox transformations are viewed as promising active components for the integration into the next-generation (beyond-CMOS) hybrid nanoelectronics. Herein, new fundamental insights into the application of organically augmented POMs on conducting surfaces are offered. Three key findings resulting from scanning probe investigations combined with integral spectroscopic methods used to explore tris(alkoxo)-ligated, vanadium-containing Wells-Dawson-type POM structures on Au(111) are reported on. First, it is shown how the (OCH2)3C–R ligands, depending on the structurally exposed R group (R = CH2SMe and NHCOC6H4SMe), influence the self-assembly behavior of the synthesized POMs on gold. Second, the impact of the employed (OCH2)3C–R ligands and the determined assembly characteristics on the relative position of POM's electronic band structure against the Fermi level of the gold surface are explained. Third, the on-surface conductance switching of single POM structures due to external electrical stimuli is demonstrated. The author's experimental efforts enable to discover highly sought-after multi-level resistive switching orchestrated by electrically accessible V(3d) states in the POM single-molecules at room temperature in a narrow voltage range.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pütt, Ricarda
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Moors, Marco
|0 P:(DE-Juel1)145323
|b 2
700 1 _ |a Kentzinger, Emmanuel
|0 P:(DE-Juel1)130754
|b 3
700 1 _ |a Karthäuser, Silvia
|0 P:(DE-Juel1)130751
|b 4
|e Corresponding author
700 1 _ |a Monakhov, Kirill Yu.
|0 P:(DE-Juel1)167441
|b 5
773 _ _ |a 10.1002/admi.202200461
|g p. 2200461 -
|0 PERI:(DE-600)2750376-8
|n 21
|p 2200461 -
|t Advanced materials interfaces
|v 9
|y 2022
|x 2196-7350
856 4 _ |u https://juser.fz-juelich.de/record/908373/files/Adv%20Materials%20Inter%20-%202022%20-%20Gl%20-%20Exploring%20the%20Ligand%20Functionality%20Electronic%20Band%20Gaps%20and%20Switching%20Characteristics.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:908373
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130754
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130751
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l From Matter to Materials and Life
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER INTERFACES : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV MATER INTERFACES : 2021
|d 2022-11-12
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21