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Abstract Azimuthal asymmetries play an important role
in scattering processes with polarized particles. This paper
introduces a new procedure using event weighting to extract
these asymmetries. It is shown that the resulting estimator
has several advantages in terms of statistical accuracy, bias,
assumptions on acceptance and luminosities compared to
other estimators discussed in the literature.

1 Introduction and meotivation

This paper describes the extraction of an azimuthal asymme-
try € occurring in an event distribution given by

1
N(@, ¢) = Eﬁa(l‘/‘, @) 00(?) (1 4 €() cos(e)). ey

The variables in Eq. (1) are defined in Table 1. Event dis-
tributions of this type appear for example in scattering pro-
cesses of a transversally polarised beam on a spin 0 target
[1]. The parameter € is the product of the polarisation and
an analyzing power, € = P A. Once € is determined one can
either determine the polarisation P if the analyzing power
A is known, or vice versa. To cancel systematic effects, one
usually takes two data sets with opposite polarisations, e.g.
polarisation up (P 1) and down (PV). The acceptance factor
a(v, ¢) may have an arbitrary dependence on the ¢ and ¥.
The only assumption is that the acceptance is the same for
the two data sets.

In this paper a new estimator using event weights and a
x 2-minimization is introduced. The method is an application
of optimal observables discussed in Refs. [2,3], but it also
takes into account luminosity and acceptance effects. The
paper is organized as follows. In Sect. 2 several estimators
to determine € (i.e. P or A) are discussed and compared.
Section 2.2 introduces the new method. Possible extensions
of this new weighting/fitting method are discussed in Sect. 3.

#e-mail: pretz@physik.rwth-aachen.de

2 Estimators to determine azimuthal asymmetries

In general one can distinguish two classes of estimators: esti-
mators using event counts, discussed in Sect. 2.1 and estima-
tors using event weights, discussed in Sect. 2.2.

2.1 Estimators using event counts

Here events around ¢ = 0 and ¢ = 7 as indicated by the
dark region in Fig. 1 enter the analysis. The expectation value
for the number of events in the left (L) part of the detector is
given by:

(M) =5 / " Llaon (14 Pl acos)) do @

—®Pmax
=LY 00 (l ~+ (cos(¢)) PTA> 3)
with
1 max
ap = — / a(p)dp and
27[ —®max
o a(p) cos(p)dg
(cos(p))p = -

Lo a(p)de

To simplify the notation the ©*-dependence is dropped. Sim-
ilar equations exist for <N1Ti,>, <Ni> and <N}\,>.
In the cross ratio
)i
(v i)
(L4 (cos(p)), PTAY(I + (cos(g)) g PYA)
(14 (cos(¢)) g PTAY(1 + (cos(9)), PHA)
introduced in Ref. [4], the usually unknown luminosities,
acceptances and unpolarized cross section cancel. Replacing
the expectation values by the actual measured event counts,

the following estimator for the analyzing power A can be
derived

“
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Table 1 Definitions of variables used in Eq. (1)

Variable Meaning

N, @) Number of events observed

(N, ¢)) Expectation value of number of events

oo (1) Unpolarized cross section

2 Polar angle

10 Azimuthal angle, ¢ = 0 corresponds to positive
x-direction

€e=PA Asymmetry parameter to be determined

P Beam polarization

A(D) Analyzing power

L Luminosity

a(v, ) Acceptance

T+ Pmaz

Fig. 1 Definition of azimuthal angle and accepted events. The beam
moves in z-direction, i.e. out of the plane

X —VX2-2Y6—1)
Y
= PV ({cos(¢)) g — (cos(p)) 8)
+P1 ((cos(p)) — (cos(9)) g 8) and
Y =2 (cos(¢)), (cos())g PYPT (5 — 1).

. with 5)

A
b'¢

Note that to evaluate (cos(¢));, g information on the accep-
tance is needed. This method was for example applied in Ref.
[5]. Here bins of Agp = 430° were used.

Another possibility is to consider estimators of the type

ONITEI®
1 NN

AA = or
P (cos()) NI 4 NIV
A '
o 1 N — N
i L ~ N ©)

t |
P {cos(@)) NJ &)+ Niq)
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where various corrections have to be applied in order to com-
pensate for acceptance and luminosity difference between the
two data sets. These type of estimators were used in Refs.
[6,7].

Common to these estimators is that they reach the same
statistical error o. In general it is more convenient to work
with the figure of merit (FOM) defined by FOM = o2
To evaluate the FOM we make a few assumptions to sim-
plify the notation: First, PT = — P, in addition we assume
that one takes roughly the same number of events in both
polarisation configurations. We also assume a uniform accep-
tance in ¢. It is straight forward to derive formulas dropping
these assumptions but the expressions are getting cumber-
some. These assumptions do not change the overall conclu-
sions comparing different estimators. Instead of discussing
the FOM on A, we will discuss the FOM of €.

Error propagation from Egs. (5) or (6) leads to
>2

FOMgounts = Nyt 1 _(COS(QO) 7

(cos(p))? €2
where Ny is the total number of events entering the anal-
ysis. Details of the calculation are given in Appendix B.1.
Neglecting the term with €, one finds:

FOME™™ = Nig; (cos(¢))? ®)
max 2
20max fﬂpmax cos(¢)de
= NO Pmax
T —®Pmax d(p

N 2 sin%(@max)

ﬂwmax

= ©)
where Ny = f02n aoo(LY + L£¥)dg is the total number of
events available in both polarisation states. Thus Ny =
NoQ@max)/ () is the total number of events entering the
analysis.

The full line in Fig. 2 shows the FOM calculated according
to Eq. (9) for different p-ranges. Increasing ¢4, the FOM
increases first. Around ¢,,,,, ~ 65° it starts to decrease. The
reason is that one adds more and more events where cos(¢)
is small. These events carry less information on € and dilute
the sample in the way the analysis is performed. This clearly
shows that this cannot be the optimal strategy. In the next sec-
tion estimators will be discussed where the FOM reaches the
dashed line, which corresponds to the Cramér—Rao bound.

2.2 Estimators using event weights

In this section estimators are discussed which use event
weights instead of event counts as in the previous subsection.
In Ref. [8] weighted sums ) ; cos(g;) are introduced in order
to extract €. To cancel acceptance effects the authors propose
to combine the event distributions from the two polarisation
states. They do not address the question how to deal with
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Fig. 2 Figure of merit (FOM) for estimators using event counts and
event weighting, calculated analytically (lines) and from MC simulation
(symbols)

different luminosities in the two different polarisation states.
The method was applied in Ref. [9] where an azimuthal sym-
metry of the detector is assumed. It is also shown in Ref.
[8] that with this weighting procedure the FOM reaches the
Cramér—Rao bound as does the unbinned likelihood method.
An unbinned likelihood method was used in Ref. [10]. It is
not straight forward to apply because the probability density
function is not completely known. Acceptance effects have
to be verified using a Monte Carlo simulation.

Now a new method, reaching the Cramér—Rao bound as
well, is introduced. The advantage is that no knowledge about
the acceptance is required (as long as it is the same for both
data sets, as in any other method) and no corrections con-
cerning the luminosities have to be applied. On the contrary,
information on the acceptance and luminosity factor Lopag
are obtained in parallel to € in this method.

We consider the following six observables

N Nt
Zcos” (p;) and Zcos”(goi), with n=0,1,2.
i=1 i=1
The sums run over the number of events in the given polar-
isation state including all azimuthal angels. Note that n = 0
corresponds just to the number of events observed, n = 1(2)
are higher moments and correspond to the sum over events
weighted with cos(¢) (cos2(<p)).

For an arbitrary acceptance in ¢ we can write the following
Fourier series:

a(e) =ao + Z ay cos(ng) + by, sin(ng). (10)

n=1

The expectation values of these observables are given by

1 2 S
T — 1 i
<N > =5 L 00/0 |:ao + E a, cos(ng) + by, sm(n(p):|

i=n

X (1 +pPtA cos(go)) de

= L'oa0 (1 n C“PM), (11)
2aq

1 2
<Z cos(goi)> =5 ETG()/O cos(p)
T

o0
X |:a0 + Zan cos(ny) + by, sin(ngo):|

n=1

X (1 +PTA cos(gpi)) de

1
= 5 £ onao <PTA (1+2"—2> +“—1), (12)

ao ao

2
<Zcos2(¢,»>> = = Llop / cos” ()
T 2 0

X |:a0 + Zan cos(ny) + by, sin(n(p):|

n=1

x (1 +pPhA cos(go)) dg

1 13
=~ £t opag 1+a_2 +_MPTA . (13)
2 2ay 4 ap

Similar expressions hold for the expectation values
(NV), <Zl cos(<pl~)> , <Zl cosz(go,-)) of the second polarisa-
tion state by replacing P with P¥. The integrals extend over
all azimuthal angles from O to 2. It is also possible to apply
the method for a limited range as in the previous section. In
this case the integrals would extend over [—@pq4x, @max] and
[T — ©max, T + @max] (dark region in Fig. 1).

Assuming that the polarisations P and PV are known,
using a x2 minimization comparing the expectation values
with the observables, one can determine the following 6
unknown parameters:

a a a
(Llooag), (Lropap), =4, 2, 2 A.
ap’ ap aop

The x?2 is given by:
X2 = (Yobs — ¥model) c! (Yobs — Ymodel)T (14)

with

Yobs = | NT, D " cos(@i), Y cos®(¢i),
1 T

NY, Zcos(go,-), ZCOS2(¢1‘) ,
l 1
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Ymoda = | (N1), <Zcos(¢i>>, <Zcos2<<oi)>,
1 1
(v). <Zcos(¢i>>, <Zcos2<goi)>
0 }

The covariance matrix C of the observables is given in
Appendix A. The easiest way to obtain values for the param-
eters is to minimize Eq. (14) numerically although analytic,
but cumbersome, expressions exist for the parameters. The
numerical solution is also preferred in view of possible exten-
sions of the method discussed in Sect. 3, where analytic solu-
tions may not exist.

The FOM, calculated using the same conditions as used
for FOMS"™S in Eq. (9), is derived in Appendix B. The final
result is:

FOMeighing _ o, feos’ )" (15)
¢ o (cos?(p)) — (cos*(p)) €2
Neglecting the term with € one finds:
FOMYeiEhting _ p <cos2 (p) (16)
v 2mee [O0 0P 0y
- O 7-[ (pmax dgo
—¥max
= No Omax + SIN(@pax) €OS(Pmax) ) (17)
T

It is shown as a dashed line in Fig. 2. At small ¢4, the
FOM of counting and weighting estimators coincide, at larger
Omax, FOMYSEMME koeng increasing.

2.3 General discussion on the figure of merit

In this subsection we make some general remarks about the
FOM reachable for event distributions of the type

n(p) = a(p) (1 £ B(p)e) . (18)

As shown in Ref. [11] the estimator
2wl — 22, wie)

2y w@nBlei) + 32, wie)Be:)

is bias free, where w(¢) is an arbitrary weight function. The
FOM is given by

¢ = (19)

(wp)?
(w2(1 — e28%))
The choice w = 1, or to be more precise w = 1 if the event

enters the analysis and w = 0 else, results in

(B)?
(1 —e2p?))

FOMI: = NtOt

FOMY=! = Ny (20)

@ Springer

Table 2 Results of simulations

Parameter Input value Cross ratio, counting Weighting/fit
Uniform acceptance

A 0.2 0.2030 £ 0.0029 0.2030 £ 0.0028
ai/ag 0 —0.0002 4+ 0.0014
az/ag 0 —0.0002 4+ 0.0014
az/ag 0 —0.0002 % 0.0028
Non-uniform acceptance, Eq. (22)

A 0.2 0.1910 + 0.0031 0.2036 + 0.0031
ai/ag 0.3 0.3003 £ 0.0013
az/ag -0.3 —0.3017 £ 0.0013
az/ag 0.2 0.2069 =+ 0.0025

The choice w = g leads to the largest FOM (in the limit
€ < 1) reaching the Cramér—Rao bound:

2
(£?)
(B2(1 —e2p7)
Translated to azimuthal asymmetries the factor B(¢) equals
cos(¢). The two FOMs given in Eq. (7), Sect. 2.1 and

Eq. (15), Sect. 2.2 are identical to the FOMs of Egs. (20)
and (21), respectively.

FOMY=F = N 2D

2.4 Results of simulations

In this subsection we crosscheck the results of the previous
subsections and discuss possible bias with the help of Monte
Carlo simulations. A Monte Carlo simulation with 10° events
in total was performed by generating data according to Eq. (1)
for two polarizations states with PT = 0.5 and P¥ = —0.5
and A = 0.2. The acceptance was once assumed to be uni-
form in ¢ and once the following parameterization

a(p) =14 0.3cos(¢p) — 0.2sin(p)
—0.3cos(2¢) + 0.1sin(2¢)
+0.2cos(3¢) + 0.2sin(3¢)
—0.1cos(4¢) + 0.1 sin(4¢) (22)

was used. In the analysis it is assumed that a(¢) is unknown.
Table 2 summarizes the results found using a MINUIT min-
imization in ROOT [12] to minimize x2 in Eq. (14). One
sees that with the weighting/fitting method, one recovers the
input analyzing power and the acceptance factors. No bias is
observed. The cross ratio method, using events in the range
—1.2 < @max < 1.2 to maximize the FOM (see Fig. 2),
gives an unbiased result for A only in the case of uniform ¢
acceptance as expected, since (cos(¢)) was calculated under
this assumption.

The circles in Fig. 2 show the FOM obtained from the
RMS of 1000 simulations where the analyzing power was
calculated according to Eq. (5) for various values of ¢4 .
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The square symbol is the FOM obtained from MINUIT using
the weighting/fitting procedure. There is perfect agreement
between the simulations and analytic formulas.

3 Possible extensions

This subsection discusses some extensions which can be
applied to the weighting/fitting method but in general not
easily to the other methods.

If the polarisation vector points for example in an arbitrary
unknown direction P = P(cos(¢), sin(¢)) in the x-y plane,
the observed signal is

N(p) o< (1 + €. cos(p) + €5 sin(p)). (23)
In this case, in the analysis one has to include also the sums

Zsin(gai)” and Zsin((pi)" for n=1,2.
1 \:

This gives in total 10 equations for 10 unknowns. The
unknowns are

apy ap az b
(LTUOGO)’(LlUOClO),—I,—Z B AT o and e,
agp

Including also tensor polarisation for a spin 1 particle, the
event distributions reads

N(p) o< (1 + €. cos(p) + € sin(yp)
+e2c cos(29) + €24 sin(29)).

This problem can be solved by using the observables

N, Zsin"(w,-), Zcos”((pi), for n=1,2,3,4.
l 1

for now in total three polarisation states. The number of equa-
tions increases to 27 for 19 parameters

(LT o0ao), (LYopap), (L00ap),

a @ a3 a4 ds ds
ap’ ap’ ap’ ap’ ap’ ap’
by by b3 by bs bg

ap’ ap’ ap’ ap’ ap’ ap’
€c, €, €2¢ and €.

Looking at Eqs. (11)—(13), one observes that the parameter
az appears only once and even suppressed with respect to a;
by a factor 3. One could set a3 to zero resulting in a fit with
6 equations for 5 unknowns, which makes a x 2 test possible.
It is also possible to add a data set with unpolarized beam to
the fit. This is for example useful if the two polarisations P
and PV are different and not known.

It is interesting to note that the method introduced here,
especially for the case were the number of equations exceeds
the number of parameter is a special case of the “Generalized
Method of Moments” (GMM) widely used in economics (e.g.
see Refs. [13,14]).

4 Summary and conclusion

Two types of estimators to extract azimuthal asymmetries
have been compared. One is based on event counts and one
on event weighting. It was shown that estimators just using
event counts do not use the full information contained in the
data. This is reflected in the fact that the figure of merit is
smaller than in methods where events are weighted with an
appropriate weight. The optimal weight for azimuthal asym-
metries is cos(p). It can also be shown that using this weight,
the FOM is the same as in a maximum likelihood method
reaching the Cramér—Rao limit of the lowest possible statis-
tical error.

Among the estimators using event weights the method
introduced in this paper has the advantage that no knowl-
edge about the acceptance is required and no correction due
to possible difference in luminosity has to be applied. On
the contrary, the method even provides information on the
azimuthal dependence of the acceptance. The method is eas-
ily extendable to more observables.
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A Covariance matrix of observables

The covariance matrix for the observables

Yobs = | N7, D cos(i),
T

Y cos (@), N¥, )~ cos(ei), ) cos’(¢i)
t b |

is
Cr 0
C:< t ) with
0 Cy
N D COs(@i) gy COs* (i)
Crapy = | Ly ©08(@) Lpqy)cos (@) Ly cos’(@i)

ZT@) cos?(¢;) ZT(U cos? (¢;) ZT(U cos*(¢;)
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A derivation of the correlation between sums over events
for different weights used here can be found in Ref. [11]
(Appendix A).

B Figure of merit for cross ratio counting and
weighting/fitting method

B.1 FOM of counting methods

Assuming PT = — PV and (cos(p)); = — (cos(p))g =:
(cos(¢)), Eq. (5) simplifies to
IRV |

€= lcos(@) NZESE

Applying standard error propagation, one finds

de
O¢c = d_5 (oF)
with
de 1 1

ds — (cos(9)) (1+/3)2/8

and
1 n 1 N 1 n 1
O'(;: _— —_— P _
Nl ONp NN

Using
Neot 1 £
NLT,R _ ;Jt (C(;S(SO)) 67 and
NY & 1+ (cos(p)) €
RL™ 2 2 ’

with Niot = NLT + N; + Ni + Ni, one finds

o5 4 1
§  VNot /1-— (COS((p))Zez.
Using

1+ {cos(p)) e
\/E 11— (cos(gp)) €

we finally arrive at

1 1 4 !
_ 3
(cos(@)) (1 +v8)2V/8 V/Neot /1= (cos(g))? €2
(24)
— 2 2
_ 1 1 — (cos(p))” € ' 25)
(cos(e)) Niot
The FOM is given by
2
FOM¢ = Nt cos())

1 — (cos(p))* €2

@ Springer

which agrees with Eq. (7). For the estimators in Eq. (6) the
FOM is obtained by a similar procedure.

B.2 FOM of weighting methods

Defining the luminosity factor £9 = Logag, Eq. (14) can be
linearized around ¢t = Lo, o= Lo, e =€y fora; = ar =
a3z = 0. Resulting in a system of linear equations

Ymodel = Axpara + Yo

with

Y apl AT 11 1 1\’
xpara = (AZ ) AZ ) Af) ) yOZZO 15 €0, 5> 15 €0, 5

2 2 2 2
1 0 0
cpcr 0 Loco
_ c 0 0
A= 0 1 0 and
0 —€nC2 —focz
0 (63 0
1 e 0 0 0
Co€E() C2 C4€ 0 0 0
_ C) C4€0 C4 0 0 0
€=l 6 0 0 1 - & |’
0 0 0 —CR€( (&) —C4€(
0 0 0 C)  —C4€0 C4

with ¢, = (cos(p)"). The covariance matrix C is the same
as in Appendix A except that we used here the expecta-
tion values instead of sum over events to arrive at an ana-
lytic expression. The covariance matrix for the parameters
(AZT, ALY, Ae€), which is identical to the covariance matrix
for the parameters (£1, £, €) since they just differ by a con-
stant vector, is given by:

0 0
Cpara — (AT C—l A)—l — 0 Z() 0 R
0 2 —C4€)
20%@0

For the FOM of ¢, replacing £o by Ny, /2, one thus finds
fcos? ()
(cos2(@)) — (cos*(p)) €3

which agrees with Eq. (15).

FOM, = Niot
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