000908388 001__ 908388
000908388 005__ 20240313103123.0
000908388 0247_ $$2Handle$$a2128/31614
000908388 037__ $$aFZJ-2022-02583
000908388 1001_ $$0P:(DE-Juel1)180539$$aAlbers, Jasper$$b0$$eCorresponding author$$ufzj
000908388 1112_ $$aNEST Conference$$cvirtual$$d2022-06-23 - 2022-06-24$$wGermany
000908388 245__ $$abeNNch – Finding Performance Bottlenecks of Neuronal Network Simulators
000908388 260__ $$c2022
000908388 3367_ $$033$$2EndNote$$aConference Paper
000908388 3367_ $$2BibTeX$$aINPROCEEDINGS
000908388 3367_ $$2DRIVER$$aconferenceObject
000908388 3367_ $$2ORCID$$aCONFERENCE_POSTER
000908388 3367_ $$2DataCite$$aOutput Types/Conference Poster
000908388 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1661146728_4409$$xAfter Call
000908388 520__ $$aModern computational neuroscience seeks to explain the dynamics and function of the brain by constructing models with ever more biological detail. This can, for example, take the form of sophisticated connectivity schemes [1] or involve the simultaneous simulation of multiple brain areas [2]. To enable progress in these studies, the simulation of models needs to become faster, calling for more efficient implementations of the underlying simulators. Performance benchmark- ing guides software development since it is hard to predict the impact of algorithm adaptations on the performance of complex software such as neuronal network simulators [3]. The particular challenge for these simulators is that executing benchmarks naturally involves the simulation of a diverse range of network models as they may uncover different performance limitations due to their variation in size, synaptic density and distribution of delays [4]. In addition, maintain- ing an accessible library of past results while keeping track of metadata that specifies hardware, software, simulator and model configurations is a difficult task. Here, we introduce beNNch [5] – a recently developed framework for benchmarking neuronal network simulations – and walk through a typical use case, highlighting how it simplifies workflows and enables sustainable use of computing resources.[1] Billeh, Y. N., Cai, B., Gratiy, S. L., Dai, K., Iyer, R., Gouwens, N. W., et al. (2020). System- atic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex. Neuron 106, 388-403.e18. doi: 10.1016/j.neuron.2020.01.040 [2] Schmidt, M., Bakker, R., Hilgetag, C. C., Diesmann, M., and van Albada, S. J. (2018a). Multi-scale ac- count of the network structure of macaque visual cortex. Brain Struct Funct. 223, 1409–1435. doi: 10.1007/s00429-017-1554-4 [3] Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018). Extremely scalable spiking neuronal network simulation code: from laptops to exascale computers. Front. Neuroinform. 12:2. doi: 10.3389/fninf.2018.00002 [4] Albers, J., Pronold, J., Kurth, A. C., Vennemo, S. B., Haghighi Mood, K., Patronis, A., et al. (in press). A Modular Workflow for Performance Benchmarking of Neuronal Network Simulations. Front. Neuroinform. doi: 10.3389/fninf.2022.837549 [5] https://github.com/INM-6/beNNch
000908388 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000908388 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x1
000908388 536__ $$0G:(EU-Grant)754304$$aDEEP-EST - DEEP - Extreme Scale Technologies (754304)$$c754304$$fH2020-FETHPC-2016$$x2
000908388 536__ $$0G:(DE-HGF)SO-092$$aACA - Advanced Computing Architectures (SO-092)$$cSO-092$$x3
000908388 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x4
000908388 536__ $$0G:(GEPRIS)368482240$$aGRK 2416:  MultiSenses-MultiScales: Novel approaches to decipher neural processing in multisensory integration (368482240)$$c368482240$$x5
000908388 536__ $$0G:(DE-Juel-1)ZT-I-PF-3-026$$aMetaMoSim - Generic metadata management for reproducible high-performance-computing simulation workflows - MetaMoSim (ZT-I-PF-3-026)$$cZT-I-PF-3-026$$x6
000908388 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x7
000908388 7001_ $$0P:(DE-Juel1)165321$$aPronold, Jari$$b1$$ufzj
000908388 7001_ $$0P:(DE-Juel1)176776$$aKurth, Anno$$b2$$ufzj
000908388 7001_ $$0P:(DE-HGF)0$$aVennemo, Stine Brekke$$b3
000908388 7001_ $$0P:(DE-Juel1)176293$$aHaghighi Mood, Kaveh$$b4$$ufzj
000908388 7001_ $$0P:(DE-Juel1)179111$$aPatronis, Alexander$$b5
000908388 7001_ $$0P:(DE-Juel1)169778$$aTerhorst, Dennis$$b6$$ufzj
000908388 7001_ $$0P:(DE-HGF)0$$aJordan, Jakob$$b7
000908388 7001_ $$0P:(DE-HGF)0$$aKunkel, Susanne$$b8
000908388 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b9$$ufzj
000908388 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b10$$ufzj
000908388 7001_ $$0P:(DE-Juel1)162130$$aSenk, Johanna$$b11$$ufzj
000908388 8564_ $$uhttps://juser.fz-juelich.de/record/908388/files/graphical_abstract_Albers-with_names_affiliations.pdf$$yOpenAccess
000908388 909CO $$ooai:juser.fz-juelich.de:908388$$pec_fundedresources$$pdriver$$pVDB$$popen_access$$popenaire
000908388 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180539$$aForschungszentrum Jülich$$b0$$kFZJ
000908388 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165321$$aForschungszentrum Jülich$$b1$$kFZJ
000908388 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176776$$aForschungszentrum Jülich$$b2$$kFZJ
000908388 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176293$$aForschungszentrum Jülich$$b4$$kFZJ
000908388 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169778$$aForschungszentrum Jülich$$b6$$kFZJ
000908388 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b9$$kFZJ
000908388 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b10$$kFZJ
000908388 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162130$$aForschungszentrum Jülich$$b11$$kFZJ
000908388 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000908388 9141_ $$y2022
000908388 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908388 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000908388 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000908388 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000908388 9801_ $$aFullTexts
000908388 980__ $$aposter
000908388 980__ $$aVDB
000908388 980__ $$aUNRESTRICTED
000908388 980__ $$aI:(DE-Juel1)INM-6-20090406
000908388 980__ $$aI:(DE-Juel1)IAS-6-20130828
000908388 980__ $$aI:(DE-Juel1)INM-10-20170113
000908388 981__ $$aI:(DE-Juel1)IAS-6-20130828