001     908388
005     20240313103123.0
024 7 _ |a 2128/31614
|2 Handle
037 _ _ |a FZJ-2022-02583
100 1 _ |a Albers, Jasper
|0 P:(DE-Juel1)180539
|b 0
|e Corresponding author
|u fzj
111 2 _ |a NEST Conference
|c virtual
|d 2022-06-23 - 2022-06-24
|w Germany
245 _ _ |a beNNch – Finding Performance Bottlenecks of Neuronal Network Simulators
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1661146728_4409
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Modern computational neuroscience seeks to explain the dynamics and function of the brain by constructing models with ever more biological detail. This can, for example, take the form of sophisticated connectivity schemes [1] or involve the simultaneous simulation of multiple brain areas [2]. To enable progress in these studies, the simulation of models needs to become faster, calling for more efficient implementations of the underlying simulators. Performance benchmark- ing guides software development since it is hard to predict the impact of algorithm adaptations on the performance of complex software such as neuronal network simulators [3]. The particular challenge for these simulators is that executing benchmarks naturally involves the simulation of a diverse range of network models as they may uncover different performance limitations due to their variation in size, synaptic density and distribution of delays [4]. In addition, maintain- ing an accessible library of past results while keeping track of metadata that specifies hardware, software, simulator and model configurations is a difficult task. Here, we introduce beNNch [5] – a recently developed framework for benchmarking neuronal network simulations – and walk through a typical use case, highlighting how it simplifies workflows and enables sustainable use of computing resources.[1] Billeh, Y. N., Cai, B., Gratiy, S. L., Dai, K., Iyer, R., Gouwens, N. W., et al. (2020). System- atic Integration of Structural and Functional Data into Multi-scale Models of Mouse Primary Visual Cortex. Neuron 106, 388-403.e18. doi: 10.1016/j.neuron.2020.01.040 [2] Schmidt, M., Bakker, R., Hilgetag, C. C., Diesmann, M., and van Albada, S. J. (2018a). Multi-scale ac- count of the network structure of macaque visual cortex. Brain Struct Funct. 223, 1409–1435. doi: 10.1007/s00429-017-1554-4 [3] Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018). Extremely scalable spiking neuronal network simulation code: from laptops to exascale computers. Front. Neuroinform. 12:2. doi: 10.3389/fninf.2018.00002 [4] Albers, J., Pronold, J., Kurth, A. C., Vennemo, S. B., Haghighi Mood, K., Patronis, A., et al. (in press). A Modular Workflow for Performance Benchmarking of Neuronal Network Simulations. Front. Neuroinform. doi: 10.3389/fninf.2022.837549 [5] https://github.com/INM-6/beNNch
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 1
536 _ _ |a DEEP-EST - DEEP - Extreme Scale Technologies (754304)
|0 G:(EU-Grant)754304
|c 754304
|f H2020-FETHPC-2016
|x 2
536 _ _ |a ACA - Advanced Computing Architectures (SO-092)
|0 G:(DE-HGF)SO-092
|c SO-092
|x 3
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 4
536 _ _ |a GRK 2416:  MultiSenses-MultiScales: Novel approaches to decipher neural processing in multisensory integration (368482240)
|0 G:(GEPRIS)368482240
|c 368482240
|x 5
536 _ _ |a MetaMoSim - Generic metadata management for reproducible high-performance-computing simulation workflows - MetaMoSim (ZT-I-PF-3-026)
|0 G:(DE-Juel-1)ZT-I-PF-3-026
|c ZT-I-PF-3-026
|x 6
536 _ _ |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
|0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|c PHD-NO-GRANT-20170405
|x 7
700 1 _ |a Pronold, Jari
|0 P:(DE-Juel1)165321
|b 1
|u fzj
700 1 _ |a Kurth, Anno
|0 P:(DE-Juel1)176776
|b 2
|u fzj
700 1 _ |a Vennemo, Stine Brekke
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Haghighi Mood, Kaveh
|0 P:(DE-Juel1)176293
|b 4
|u fzj
700 1 _ |a Patronis, Alexander
|0 P:(DE-Juel1)179111
|b 5
700 1 _ |a Terhorst, Dennis
|0 P:(DE-Juel1)169778
|b 6
|u fzj
700 1 _ |a Jordan, Jakob
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kunkel, Susanne
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Tetzlaff, Tom
|0 P:(DE-Juel1)145211
|b 9
|u fzj
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 10
|u fzj
700 1 _ |a Senk, Johanna
|0 P:(DE-Juel1)162130
|b 11
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/908388/files/graphical_abstract_Albers-with_names_affiliations.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:908388
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180539
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165321
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176776
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)176293
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)169778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)145211
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)144174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)162130
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-6-20090406
|k INM-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Theoretical Neuroscience
|x 1
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 2
980 1 _ |a FullTexts
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-6-20090406
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
981 _ _ |a I:(DE-Juel1)IAS-6-20130828


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21