000908400 001__ 908400
000908400 005__ 20230112132720.0
000908400 0247_ $$2doi$$a10.3389/fpls.2022.798741
000908400 0247_ $$2Handle$$a2128/31454
000908400 0247_ $$2altmetric$$aaltmetric:123016799
000908400 0247_ $$2pmid$$apmid:35237283
000908400 0247_ $$2WOS$$aWOS:000761659600001
000908400 037__ $$aFZJ-2022-02590
000908400 082__ $$a570
000908400 1001_ $$0P:(DE-Juel1)177009$$aKhare, Deepanshu$$b0$$eCorresponding author$$ufzj
000908400 245__ $$aRoot System Scale Models Significantly Overestimate Root Water Uptake at Drying Soil Conditions
000908400 260__ $$aLausanne$$bFrontiers Media$$c2022
000908400 3367_ $$2DRIVER$$aarticle
000908400 3367_ $$2DataCite$$aOutput Types/Journal article
000908400 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1657270581_27127
000908400 3367_ $$2BibTeX$$aARTICLE
000908400 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908400 3367_ $$00$$2EndNote$$aJournal Article
000908400 520__ $$aSoil hydraulic conductivity (ksoil) drops significantly in dry soils, resulting in steep soil water potential gradients (ψs) near plant roots during water uptake. Coarse soil grid resolutions in root system scale (RSS) models of root water uptake (RWU) generally do not spatially resolve this gradient in drying soils which can lead to a large overestimation of RWU. To quantify this, we consider a benchmark scenario of RWU from drying soil for which a numerical reference solution is available. We analyze this problem using a finite volume scheme and investigate the impact of grid size on the RSS model results. At dry conditions, the cumulative RWU was overestimated by up to 300% for the coarsest soil grid of 4.0 cm and by 30% for the finest soil grid of 0.2 cm, while the computational demand increased from 19 s to 21 h. As an accurate and computationally efficient alternative to the RSS model, we implemented a continuum multi-scale model where we keep a coarse grid resolution for the bulk soil, but in addition, we solve a 1-dimensional radially symmetric soil model at rhizosphere scale around individual root segments. The models at the two scales are coupled in a mass-conservative way. The multi-scale model compares best to the reference solution (−20%) at much lower computational costs of 4min. Our results demonstrate the need to shift to improved RWU models when simulating dry soil conditions and highlight that results for dry conditions obtained with RSS models of RWU should be interpreted with caution.
000908400 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000908400 536__ $$0G:(GEPRIS)274830790$$aAdvancing structural-functional modelling of root growth and root-soilinteractions based on automatic reconstruction of root systems fromMRI (274830790)$$c274830790$$x1
000908400 536__ $$0G:(BMBF)390732324$$aEXC 2070:  PhenoRob - Robotics and Phenotyping for Sustainable Crop Production (390732324)$$c390732324$$x2
000908400 536__ $$0G:(BMBF)031B0515C$$aBonaRes - (Modul A, Phase 2): Soil3-II - Nachhaltiges Unterbodenmanagement, Teilprojekt C (031B0515C)$$c031B0515C$$x3
000908400 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908400 7001_ $$0P:(DE-Juel1)179508$$aSelzner, Tobias$$b1$$eCorresponding author$$ufzj
000908400 7001_ $$0P:(DE-Juel1)187335$$aLeitner, Daniel$$b2$$ufzj
000908400 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b3$$ufzj
000908400 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b4$$ufzj
000908400 7001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b5$$ufzj
000908400 773__ $$0PERI:(DE-600)2711035-7$$a10.3389/fpls.2022.798741$$gVol. 13, p. 798741$$p798741$$tFrontiers in Functional Plant Ecology$$v13$$x1664-462X$$y2022
000908400 8564_ $$uhttps://juser.fz-juelich.de/record/908400/files/fpls-13-798741.pdf$$yOpenAccess
000908400 8767_ $$d2022-12-26$$eAPC$$jDeposit$$lDeposit: Frontiers$$z1572,50
000908400 909CO $$ooai:juser.fz-juelich.de:908400$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000908400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177009$$aForschungszentrum Jülich$$b0$$kFZJ
000908400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179508$$aForschungszentrum Jülich$$b1$$kFZJ
000908400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187335$$aForschungszentrum Jülich$$b2$$kFZJ
000908400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b3$$kFZJ
000908400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b4$$kFZJ
000908400 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich$$b5$$kFZJ
000908400 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000908400 9141_ $$y2022
000908400 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000908400 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908400 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000908400 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
000908400 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908400 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000908400 920__ $$lyes
000908400 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000908400 9801_ $$aFullTexts
000908400 980__ $$ajournal
000908400 980__ $$aVDB
000908400 980__ $$aUNRESTRICTED
000908400 980__ $$aI:(DE-Juel1)IBG-3-20101118
000908400 980__ $$aAPC