| Home > Publications database > Surface-to-space atmospheric waves from Hunga Tonga-Hunga Ha’apai eruption > print |
| 001 | 908443 | ||
| 005 | 20260122223354.0 | ||
| 024 | 7 | _ | |2 doi |a 10.1038/s41586-022-05012-5 |
| 024 | 7 | _ | |2 ISSN |a 0028-0836 |
| 024 | 7 | _ | |2 ISSN |a 1476-4687 |
| 024 | 7 | _ | |2 Handle |a 2128/31901 |
| 024 | 7 | _ | |2 pmid |a 35772670 |
| 024 | 7 | _ | |2 WOS |a WOS:000854445900001 |
| 037 | _ | _ | |a FZJ-2022-02609 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 500 |
| 100 | 1 | _ | |0 P:(DE-HGF)0 |a Wright, Corwin J. |b 0 |e Corresponding author |
| 245 | _ | _ | |a Surface-to-space atmospheric waves from Hunga Tonga-Hunga Ha’apai eruption |
| 260 | _ | _ | |a London [u.a.] |b Nature Publ. Group |c 2022 |
| 336 | 7 | _ | |2 DRIVER |a article |
| 336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
| 336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1672390979_13114 |
| 336 | 7 | _ | |2 BibTeX |a ARTICLE |
| 336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
| 336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
| 520 | _ | _ | |a The January 2022 Hunga Tonga–Hunga Haʻapai eruption was one of the most explosive volcanic events of the modern era, producing a vertical plume which peaked > 50 km above the Earth. The initial explosion and subsequent plume triggered atmospheric waves which propagated around the world multiple times. A global-scale wave response of this magnitude from a single source has not previously been observed. Here we show the details of this response, using a comprehensive set of satellite and ground-based observations to quantify it from surface to ionosphere. A broad spectrum of waves was triggered by the initial explosion, including Lamb waves propagating at phase speeds of 318.2±6 m/s at surface level and between 308±5 to 319±4 m/s in the stratosphere, and gravity waves propagating at 238±3 to 269±3 m/s in the stratosphere. Gravity waves at sub-ionospheric heights have not previously been observed propagating at this speed or over the whole Earth from a single source. Latent heat release from the plume remained the most significant individual gravity wave source worldwide for > 12 hours, producing circular wavefronts visible across the Pacific basin in satellite observations. A single source dominating such a large region is also unique in the observational record. The Hunga Tonga eruption represents a key natural experiment in how the atmosphere responds to a sudden point-source-driven state change, which will be of use for improving weather and climate models. |
| 536 | _ | _ | |0 G:(DE-HGF)POF4-5111 |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |c POF4-511 |f POF IV |x 0 |
| 536 | _ | _ | |0 G:(DE-Juel-1)SDLCS |a Simulation and Data Lab Climate Science |c SDLCS |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Hindley, Neil P. |b 1 |
| 700 | 1 | _ | |0 0000-0003-2495-3597 |a Alexander, M. Joan |b 2 |
| 700 | 1 | _ | |0 0000-0002-7612-3811 |a Barlow, Mathew |b 3 |
| 700 | 1 | _ | |0 P:(DE-Juel1)129125 |a Hoffmann, Lars |b 4 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Mitchell, Cathryn N. |b 5 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Prata, Fred |b 6 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Bouillon, Marie |b 7 |
| 700 | 1 | _ | |0 0000-0003-0396-3980 |a Carstens, Justin |b 8 |
| 700 | 1 | _ | |0 0000-0003-0394-7200 |a Clerbaux, Cathy |b 9 |
| 700 | 1 | _ | |0 0000-0002-8751-1211 |a Osprey, Scott M. |b 10 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Powell, Nick |b 11 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Randall, Cora E. |b 12 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Yue, Jia |b 13 |
| 773 | _ | _ | |0 PERI:(DE-600)1413423-8 |a 10.1038/s41586-022-05012-5 |p 741–746 |t Nature |v 609 |x 0028-0836 |y 2022 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/908443/files/420487_2_merged_1653579833.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/908443/files/s41586-022-05012-5.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:908443 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129125 |a Forschungszentrum Jülich |b 4 |k FZJ |
| 913 | 1 | _ | |0 G:(DE-HGF)POF4-511 |1 G:(DE-HGF)POF4-510 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5111 |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |v Enabling Computational- & Data-Intensive Science and Engineering |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
| 915 | _ | _ | |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |a Creative Commons Attribution CC BY 4.0 |
| 915 | _ | _ | |0 StatID:(DE-HGF)3003 |2 StatID |a DEAL Nature |d 2022-11-29 |w ger |
| 915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b NATURE : 2021 |d 2022-11-29 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2022-11-29 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |d 2022-11-29 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |d 2022-11-29 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |d 2022-11-29 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Clarivate Analytics Master Journal List |d 2022-11-29 |
| 915 | _ | _ | |0 StatID:(DE-HGF)1190 |2 StatID |a DBCoverage |b Biological Abstracts |d 2022-11-29 |
| 915 | _ | _ | |0 StatID:(DE-HGF)1210 |2 StatID |a DBCoverage |b Index Chemicus |d 2022-11-29 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0113 |2 StatID |a WoS |b Science Citation Index Expanded |d 2022-11-29 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |d 2022-11-29 |
| 915 | _ | _ | |0 StatID:(DE-HGF)1050 |2 StatID |a DBCoverage |b BIOSIS Previews |d 2022-11-29 |
| 915 | _ | _ | |0 StatID:(DE-HGF)1030 |2 StatID |a DBCoverage |b Current Contents - Life Sciences |d 2022-11-29 |
| 915 | _ | _ | |0 StatID:(DE-HGF)1040 |2 StatID |a DBCoverage |b Zoological Record |d 2022-11-29 |
| 915 | _ | _ | |0 StatID:(DE-HGF)1060 |2 StatID |a DBCoverage |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2022-11-29 |
| 915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-29 |
| 915 | _ | _ | |0 StatID:(DE-HGF)1200 |2 StatID |a DBCoverage |b Chemical Reactions |d 2022-11-29 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0160 |2 StatID |a DBCoverage |b Essential Science Indicators |d 2022-11-29 |
| 915 | _ | _ | |0 StatID:(DE-HGF)9960 |2 StatID |a IF >= 60 |b NATURE : 2021 |d 2022-11-29 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|