000908454 001__ 908454
000908454 005__ 20230404095008.0
000908454 0247_ $$2doi$$a10.3389/fphy.2022.907160
000908454 0247_ $$2Handle$$a2128/31432
000908454 0247_ $$2altmetric$$aaltmetric:129845206
000908454 0247_ $$2WOS$$aWOS:000819201900001
000908454 037__ $$aFZJ-2022-02613
000908454 082__ $$a530
000908454 1001_ $$0P:(DE-Juel1)174485$$aJattana, Manpreet Singh$$b0$$eCorresponding author$$ufzj
000908454 245__ $$aAssessment of the Variational Quantum Eigensolver: Application to the Heisenberg Model
000908454 260__ $$aLausanne$$bFrontiers Media$$c2022
000908454 3367_ $$2DRIVER$$aarticle
000908454 3367_ $$2DataCite$$aOutput Types/Journal article
000908454 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1657097052_11497
000908454 3367_ $$2BibTeX$$aARTICLE
000908454 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908454 3367_ $$00$$2EndNote$$aJournal Article
000908454 520__ $$aWe present and analyze large-scale simulation results of a hybrid quantum-classical variational method to calculate the ground state energy of the anti-ferromagnetic Heisenberg model. Using a massively parallel universal quantum computer simulator, we observe that a low-depth-circuit ansatz advantageously exploits the efficiently preparable Néel initial state, avoids potential barren plateaus, and works for both one- and two-dimensional lattices. The analysis reflects the decisive ingredients required for a simulation by comparing different ansätze, initial parameters, and gradient-based versus gradient-free optimizers. Extrapolation to the thermodynamic limit accurately yields the analytical value for the ground state energy, given by the Bethe ansatz. We predict that a fully functional quantum computer with 100 qubits can calculate the ground state energy with a relatively small error.
000908454 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000908454 536__ $$0G:(EU-Grant)820363$$aOpenSuperQ - An Open Superconducting Quantum Computer (820363)$$c820363$$fH2020-FETFLAG-2018-03$$x1
000908454 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908454 7001_ $$0P:(DE-Juel1)144355$$aJin, Fengping$$b1$$ufzj
000908454 7001_ $$0P:(DE-Juel1)179169$$aDe Raedt, Hans$$b2$$ufzj
000908454 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, Kristel$$b3$$ufzj
000908454 773__ $$0PERI:(DE-600)2721033-9$$a10.3389/fphy.2022.907160$$gVol. 10, p. 907160$$p907160$$tFrontiers in physics$$v10$$x2296-424X$$y2022
000908454 8564_ $$uhttps://juser.fz-juelich.de/record/908454/files/fphy-10-907160.pdf$$yOpenAccess
000908454 8767_ $$d2022-12-27$$eAPC$$jDeposit$$z2116,50 USD
000908454 909CO $$ooai:juser.fz-juelich.de:908454$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000908454 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174485$$aForschungszentrum Jülich$$b0$$kFZJ
000908454 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144355$$aForschungszentrum Jülich$$b1$$kFZJ
000908454 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179169$$aForschungszentrum Jülich$$b2$$kFZJ
000908454 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138295$$aForschungszentrum Jülich$$b3$$kFZJ
000908454 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000908454 9141_ $$y2022
000908454 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000908454 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908454 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000908454 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000908454 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908454 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000908454 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PHYS-LAUSANNE : 2021$$d2022-11-15
000908454 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000908454 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000908454 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-12T10:34:55Z
000908454 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-12T10:34:55Z
000908454 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-12T10:34:55Z
000908454 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000908454 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000908454 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15
000908454 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-15
000908454 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000908454 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000908454 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000908454 920__ $$lyes
000908454 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000908454 9801_ $$aFullTexts
000908454 980__ $$ajournal
000908454 980__ $$aVDB
000908454 980__ $$aUNRESTRICTED
000908454 980__ $$aI:(DE-Juel1)JSC-20090406
000908454 980__ $$aAPC