001     908456
005     20240624104534.0
024 7 _ |a 10.1017/eds.2022.9
|2 doi
024 7 _ |a 2128/31431
|2 Handle
024 7 _ |a altmetric:130514046
|2 altmetric
024 7 _ |a WOS:001223640200010
|2 WOS
037 _ _ |a FZJ-2022-02615
041 _ _ |a English
082 _ _ |a 333.7
100 1 _ |a Leufen, Lukas Hubert
|0 P:(DE-Juel1)177004
|b 0
|e Corresponding author
245 _ _ |a Exploring decomposition of temporal patterns to facilitate learning of neural networks for ground-level daily maximum 8-hour average ozone prediction
260 _ _ |a Cambridge
|c 2022
|b Cambridge University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1657094102_11695
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Exposure to ground-level ozone is a concern for both humans and vegetation, so accurate prediction of ozone time series is of great importance. However, conventional as well as emerging methods have deficiencies in predicting time series when a superposition of differently pronounced oscillations on various time scales is present. In this paper, we propose a meteorologically motivated filtering method of time series data, which can separate oscillation patterns, in combination with different multibranch neural networks. To avoid phase shifts introduced by using a causal filter, we combine past observation data with a climatological estimate about the future to be able to apply a noncausal filter in a forecast setting. In addition, the forecast in the form of the expected climatology provides some a priori information that can support the neural network to focus not merely on learning a climatological statistic. We apply this method to hourly data obtained from over 50 different monitoring stations in northern Germany situated in rural or suburban surroundings to generate a prediction for the daily maximum 8-hr average values of ground-level ozone 4 days into the future. The data preprocessing with time filters enables simpler neural networks such as fully connected networks as well as more sophisticated approaches such as convolutional and recurrent neural networks to better recognize long-term and short-term oscillation patterns like the seasonal cycle and thus leads to an improvement in the forecast skill, especially for a lead time of more than 48 hr, compared to persistence, climatological reference, and other reference models.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a IntelliAQ - Artificial Intelligence for Air Quality (787576)
|0 G:(EU-Grant)787576
|c 787576
|f ERC-2017-ADG
|x 1
536 _ _ |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
|0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|c PHD-NO-GRANT-20170405
|x 2
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 3
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Kleinert, Felix
|0 P:(DE-Juel1)176602
|b 1
700 1 _ |a Schultz, Martin G.
|0 P:(DE-Juel1)6952
|b 2
773 _ _ |a 10.1017/eds.2022.9
|g Vol. 1, p. e10
|0 PERI:(DE-600)3116427-4
|p e10
|t Environmental data science
|v 1
|y 2022
|x 2634-4602
856 4 _ |u https://juser.fz-juelich.de/record/908456/files/exploring-decomposition-of-temporal-patterns-to-facilitate-learning-of-neural-networks-for-ground-level-daily-maximum-8-hour-average-ozone-prediction.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:908456
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177004
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)176602
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21