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Abstract

Exposure to ground-level ozone is a concern for both humans and vegetation, so accurate prediction of ozone time
series is of great importance. However, conventional aswell as emergingmethods have deficiencies in predicting time
series when a superposition of differently pronounced oscillations on various time scales is present. In this paper, we
propose a meteorologically motivated filtering method of time series data, which can separate oscillation patterns, in
combination with different multibranch neural networks. To avoid phase shifts introduced by using a causal filter, we
combine past observation data with a climatological estimate about the future to be able to apply a noncausal filter in a
forecast setting. In addition, the forecast in the form of the expected climatology provides some a priori information
that can support the neural network to focus not merely on learning a climatological statistic. We apply this method to
hourly data obtained from over 50 different monitoring stations in northern Germany situated in rural or suburban
surroundings to generate a prediction for the daily maximum 8-hr average values of ground-level ozone 4 days into
the future. The data preprocessing with time filters enables simpler neural networks such as fully connected networks
as well as more sophisticated approaches such as convolutional and recurrent neural networks to better recognize
long-term and short-term oscillation patterns like the seasonal cycle and thus leads to an improvement in the forecast
skill, especially for a lead time of more than 48 hr, compared to persistence, climatological reference, and other
reference models.

Impact Statement

Exposure to ground-level ozone harms humans and vegetation, but the prediction of ozone time series, especially
by machine learning, encounters problems due to the superposition of different oscillation patterns from long-
term to short-term scales. Decomposing the input time series into long-term and short-term signals with the help
of climatology and statistical filtering techniques can improve the prediction of various neural network
architectures due to an improved recognition of different temporal patterns. More reliable and accurate forecasts
support decision-makers and individuals in taking timely and necessary countermeasures to air pollution
episodes.
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1. Introduction

Human health and vegetation growth are impaired by ground-level ozone (REVIHAAP, 2013; US EPA,
2013; Monks et al., 2015; Maas and Grennfelt, 2016; Fleming et al., 2018). High short-term ozone
exposures cause worsening of symptoms, a need for stronger medication, and an increase in emergency
hospital admissions, for people with asthma or chronic obstructive pulmonary diseases in particular
(US EPA, 2020). More broadly, ozone exposure also increases susceptibility to respiratory diseases such
as pneumonia in general, which in turn leads to an increased likelihood of hospitalization (USEPA, 2020).
Findings of Di et al. (2017) further support earlier research that short-term exposure to ozone, even below
regulatory limits, is highly likely to increase the risk of premature death, particularly for the elderly. Since
the 1990s, there have been major changes in the global distribution of anthropogenic emissions (Richter
et al., 2005; Granier et al., 2011; Russell et al., 2012; Hilboll et al., 2013; Zhang et al., 2016), which in turn
has an influence on the ozone concentrations. Although reductions in peak concentrations have been
achieved (Simon et al., 2015; Lefohn et al., 2017; Fleming et al., 2018), the negative effects of ground-
level ozone remain (Cohen et al., 2017; Seltzer et al., 2017; Zhang et al., 2018; Shindell et al., 2019).
Recent studies show that within the EuropeanUnion, for example, ozone has the greatest impact on highly
industrialized countries such as Germany, France, or Spain (Ortiz and Guerreiro, 2020). For all these
reasons, it is therefore of utmost importance to be able to predict ozone as accurately as possible in the
short term.

In light of these impacts, it is desirable to accurately forecast ozone concentrations for a couple of days
so that protection measures can be initiated in time. Chemical transport models (CTMs), which explicitly
solve the underlying chemical and physical equations, are commonly used to predict ozone (e.g., Collins
et al., 1997; Wang et al., 1998a, 1998b; Horowitz et al., 2003; von Kuhlmann et al., 2003; Grell et al.,
2005; Donner et al., 2011). Even though CTMs are equipped with the most up-to-date knowledge of
research, the resulting estimates for exposure to and impacts of ozone may vary enormously between
different CTM studies (Seltzer et al., 2020). Since CTMs operate on a computational grid and are thus
always dependent on simplification of processes, parameterizations, and further assumptions, CTMs are
themselves affected by large uncertainties (Manders et al., 2012). The deviations in the output of CTMs
result accordingly from chemical and physical processes, fluxes such as emissions or deposition, as well
as meteorological phenomena (Vautard et al., 2012; Bessagnet et al., 2016; Young et al., 2018). Finally, in
order to use the predictions of the CTMs at the level of measuring stations, either model output statistics
have to be applied (Fuentes and Raftery, 2005) or statistical methods are required (Lou Thompson et al.,
2001).

In addition to simpler methods such as multilinear regressions, statistical methods that can map the
relationship between time and observations in the time series are also suitable for this purpose. In
general, time series can be characterized by the fact that values that are close in time tend to be similar
or correlated (Wilks, 2006) and that the temporal ordering of these values forms an essential property
of the time series (Bagnall et al., 2017). Autoregressive models (ARs) use this relationship and
calculate the next value of a series xiþ1 as a function ϕ of past values xi,xi�1,…,xi�n where ϕ is simply a
linear regression. Autoregressive moving average models extend this approach by additionally
considering the error of past values, which is not described by the AR model. In the case of
nonstationary time series, autoregressive integrated moving average models are used. However, these
approaches are mostly limited to univariate problems and can only represent linear relationships (Shih
et al., 2019). Alternative developments of nonlinear statistical models, such as Monte Carlo simula-
tions or bootstrapping methods, have therefore been used for nonlinear predictions (De Gooijer and
Hyndman, 2006).

In times of high availability of large data and increasingly efficient computing systems, machine
learning (ML) has become an excellent alternative to classical statistical methods (Reichstein et al., 2019).
ML is a generic term for data-driven algorithms like decision trees, random forests, or neural networks
(NNs), which usually determine their parameters in a data-hungry and time-consuming learning process
and can then be applied to new data at relatively low cost in terms of time and computational effort.
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Fully connected networks (FCNs) are the pioneers of NNs and were already successfully applied
around the turn of the millennium, for example, for the prediction of meteorological and air quality
problems (Comrie, 1997; Gardner and Dorling, 1999; Elkamel et al., 2001; Kolehmainen et al., 2001).
Simply put, FCNs extend the classical method of multilinear regression by adding the properties of
nonlinearity as well as learning of knowledge. From a theoretical point of view, a sufficiently large
network can be assumed to be a universal approximator of any function (Hornik et al., 1989). Neverthe-
less, it also shows that the application of FCNs is limited because they ignore the topology of the inputs
(LeCun et al., 1999). In terms of time series, this means that FCNs will not be able to understand the
abstract concept of unidirectional time.

These shortcomings have been overcome to some extent by deep learning (DL). In general, any NN
that has a more sophisticated architecture or is based on more than three layers is classified as a deep
NN. As Schultz et al. (2021) describe, the history of DL has been marked by highs and lows, as both
computational cost and the size of datasets have always been tough adversaries. Since the 2010s, DL’s
more recent advances can be attributed to three main points: First, the acquisition of new knowledge
has been drastically accelerated by massive parallel computation using graphics processing units.
Second, so-called convolutional neural networks (CNNs; LeCun et al., 1999) became popular, whose
strength lies in their ability to contextualize individual data points better than previous neural
networks by sharing weights within the network and thus learning more information while maintain-
ing the same network size. Finally, due to ever-increasing digitization, more and more data are
available in ever-improving quality. Since DL methods are purely data-based compared to classical
statistics, greater knowledge can be built up within a neural network simply through the greater
availability of data.

Various newer NN architectures have been developed and also applied to time series forecasting in
recent years. In this study, we focus on CNNs and recurrent neural networks (RNNs) as competitors to an
FCN. For the prediction of time series, CNNs offer an advantage over FCNs due to their ability to better
map relationships between neighboring data points. In Earth sciences, time series are typically multi-
variate, since a single time series is rarely considered in isolation, but always in interaction with other
variables. However, multivariate time series should not be treated straightforwardly as two-dimensional
images, since a causal relationship between different time series does not necessarily exist at all times and
a different order of these time series would influence the result.Multivariate time series are therefore better
to be understood as a composite of different one-dimensional data series (Zheng et al., 2014). Following
this fact, multivariate time series can best be considered as a one-dimensional picture with different color
channels. To extract temporal information with a CNN, so-called inception blocks (Szegedy et al., 2015)
are frequently used, as, for example, in Fawaz et al. (2020) andKleinert et al. (2021). These blocks consist
of individual convolutional elements with different filter sizes that are applied in parallel and are intended
to learn features with different temporal localities.

RNNs offer the possibility to model nonlinear behavior in temporal sequences in a nonparametric
way. Frequently used RNNs are long short-term memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997) and gated recurrent unit networks (Chung et al., 2014) or hybrids of RNNs
and CNNs such as in Liang and Hu (2015) and Keren and Schuller (2016). RNNs find intensive
application in natural language processing, speech recognition, and signal processing, although they
appear to have been largely replaced by transformer architectures more recently. However, these
applications are mostly analysis problems and not predictive tasks. For time series prediction,
especially for the prediction of multiple time steps into the future, there is little research evaluating
the predictive performance of RNNs (Chandra et al., 2021). Moreover, Zhao et al. (2020) question the
term long in LSTMs, as their research shows that LTSMs do not have long-term memory from a purely
statistical point of view because their behavior hardly differs from that of a first-order
AR. Furthermore, Cho et al. (2014) were able to show that these network types, for example, have
difficulties in reflecting an annual pattern in daily-resolved data. Thus, the superposition of different
periodic patterns remains a critical issue in time series prediction, as RNNs have fundamental

Lukas H. Leufen et al. e10-3

https://doi.org/10.1017/eds.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2022.9


difficulties with extrapolating and predicting periodic signals (Ziyin et al., 2020) and therefore tend to
focus on short-term signals only (Shih et al., 2019).

In order to deal with the superposition of different periodic signals and thus help the learning process
of the NN, digital filters can be used. So-called finite impulse response (FIR) filters are realized by
convolution of the time series with a window function (Oppenheim and Schafer, 1975). In fact, FIR filters
are widely used in meteorology without being labeled as such, since a moving average is nothing more
than a convolution with a rectangular window function. With the help of such FIR filters, it is possible to
extract or remove a long-term signal from a time series or to directly divide the time series into several
components with different frequency ranges, as applied, for example, in Rao and Zurbenko (1994), Wise
and Comrie (2005), andKang et al. (2013). In these studies, so-called Kolmogorov–Zurbenko (KZ) filters
(Žurbenko, 1986) are used, which were specially developed for use in meteorology and promise a good
separation between long-term and short-term variations of meteorological and air quality time series (Rao
and Zurbenko, 1994).

There are examples of the use of filters in combination with NNs, for example, in Cui et al. (2016)
and Jiang et al. (2019), but these are limited purely to analysis problems. The application of filters in a
predictive setting is more complicated, because, for a prediction, filters may only be applied causally to
past values, which inevitably produces a phase shift and thus a delay in the filtered signal (Oppenheim
and Schafer, 1975). The lower the chosen cutoff frequency of the low-pass filter, for example, to extract
the seasonal cycle, the more the resulting signal becomes delayed. This in turn leads to the fact that
values in the recent past cannot be separated, as no information is yet available on the long-term
components.

In this work, we propose an alternative way to filter the input time series using a composite of
observations and climatological statistics to be able to separate long-term and short-term signals with the
smallest possible delay. By dividing the input variables into different frequency ranges, different NN
architectures are able to improve their understanding of both short-term and long-term patterns.

This paper is structured as follows: First, in Section 2, we explain and formalize the decomposition of
the input time series and give details about the NN architecture used. Then, in Section 3, we describe our
conducted experiments in detail, describing the data used, their preparation, the training setup, and the
evaluation procedures. This is followed by the results in Section 4. Finally, we discuss our results in
Section 5 and draw our conclusions in Section 6.

2. Methodology

In this paper, we combine actual observation data and a meteorologically and statistically motivated
estimate of the future to overcome the issue of delay and causality (see Section 1). The estimate about
the future is composed of climatological information about the seasonal as well as diurnal cycle, whereby
the latter is also allowed to vary over the year. For each observation point t0, these two time series, the
observation for time steps with ti ≤ t0 and the statistical estimation for ti > t0, are concatenated. By doing
this, noncausal filters can be applied to the composite time series in order to separate the oscillation
components of the time series such as the dominant seasonal and diurnal cycle.

The decomposition of the time series is obtained by the iterative application of several low-pass filters
with different cutoff frequencies. The signal resulting from a first filter run, which only has frequencies
below a given cutoff frequency, is then subtracted from the original composite signal. The next filter
iteration with a higher cutoff frequency then starts on this residual, the result of which is again subtracted.
By applying this cycle several times, a time series with the long-term components, multiple series
covering certain frequency ranges, and a last residual time series containing all remaining short-term
components are generated. Here, we test filter combinationswith four and two frequency bands. The exact
cycle of filtering is described in Section 2.1.

Each filtered component is finally used as an input branch of a so-called multibranch NN (MB-NN),
which first processes the information of each input branch separately and then combines it in a subsequent
layer. In Section 2.2, we go into more detail about the architecture of the MB-NN.
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2.1. Time series filter

For each time step t0, a composite time series �x 0ð Þ
i ,

�x 0ð Þ
i t0ð Þ¼ x 0ð Þ

i , ti ≤ t0,

a 0ð Þ
i , ti > t0,

(
(1)

can be created that is composed of the true observation x 0ð Þ
i for past time steps and a climatological

estimate

a 0ð Þ
i ¼ x 0ð Þ

month tið ÞþΔ 0ð Þ
hour tið Þ (2)

for future values. The composite time series �x 0ð Þ
i is always a function of the current observation time t0.

The climatological estimate is derived from a monthly mean value x 0ð Þ
month tið Þ with

x 0ð Þ
month tið Þ¼ f 0ð Þ x 0ð Þ

i

� �
(3)

and a daily anomaly Δ 0ð Þ
hour tið Þ of it with

Δ 0ð Þ
hour tið Þ¼ g 0ð Þ x 0ð Þ

i � x 0ð Þ
month tið Þ

� �
(4)

that may vary over the year. f 0ð Þ and g 0ð Þ are arbitrary functions used to calculate these estimates.
The composite time series �x 0ð Þ

i t0ð Þ can then be convolved with an FIR filter with given properties b 0ð Þ
i . The

result of this convolution is a low-pass filtered time series:

~x 0ð Þ
n t0ð Þ ¼ ∑

t0þN=2

i¼t0�N=2
b 0ð Þ
i � �x 0ð Þ

n�i t0ð Þ: (5)

It should be noted again that ~x 0ð Þ
i is still a function of the current observation time t0. From the composite

time series and its filtered result, a residual

x 1ð Þ
i t0ð Þ ¼ x 0ð Þ

i � ~x 0ð Þ
i t0ð Þ (6)

can be calculated, which represents the equivalent high-pass signal.
Anew filtering step can now be applied to the residual x 1ð Þ

i t0ð Þ. For this, the a priori information, which
is used to estimate the future, is first newly calculated. Ideally, if the first filter application in equation (5)

has already completely removed the seasonal cycle, the climatological mean x 1ð Þ
month tið Þ is zero, and based

on our assumption in equation (2), only an estimate of the hourly daily anomaly Δ 1ð Þ
hour tið Þ remains.

With this information, a composite time series �x 1ð Þ
i t0ð Þ can now be formed, which can separate higher

frequency oscillation components using another low-pass filter with a higher cutoff frequency. A time series

~x 1ð Þ
n t0ð Þ created in this way corresponds to the application of a band-pass filter. On the residual x 2ð Þ

i t0ð Þ, the
next filter iteration with corresponding a priori information can be carried out. Generalized, equations (1)–
(6) result in

x jð Þ
month tið Þ¼ f jð Þ x jð Þ

i

� �
, (7)

Δ jð Þ
hour tið Þ¼ g jð Þ x jð Þ

i � x jð Þ
month tið Þ

� �
, (8)

a jð Þ
i ¼ x jð Þ

month tið ÞþΔ jð Þ
hour tið Þ, (9)

�x jð Þ
i t0ð Þ¼ x jð Þ

i , ti ≤ t0,

a jð Þ
i , ti > t0,

(
(10)
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~xn jð Þ t0ð Þ ¼ ∑
t0þN=2

i¼ t0�N=2
b jð Þ
i � �x jð Þ

n�i t0ð Þ, (11)

x jþ1ð Þ
i t0ð Þ ¼ x jð Þ

i � ~x jð Þ
i t0ð Þ: (12)

If a time series was decomposed according to this procedure using equations (7)–(12) with J filters, it
now consists of a component ~x 0ð Þ, that contains all low-frequency components, J�1 components ~x jð Þ with
oscillations on different frequency intervals, and a residual term x Jð Þ that only covers the high-frequency
components. The original signal can be completely reconstructed at any time ti by summing up the
individual components.

In this study, oscillation patterns that have a periodicity of months or years are separated from the series
in the first filter iteration by using a cutoff period of 21 days, which is motivated by the work of Kang et al.
(2013). We also consider a cutoff period of around 75 days, as used, for example, in Rao et al. (1997) and
Wise and Comrie (2005), and evaluate the impact of this low-frequency cutoff. For the further decom-
position of the time series, we first follow the cutoff frequencies proposed in Kang et al. (2013) and divide
the time series into the four components baseline (BL, period >21 days), synoptic (SY, period >2.7 days),
diurnal (DU, period >11 hr), and intraday (ID, residuum). Since Kang et al. (2013) found that a clear
separation of the individual components is not possible for the short-term components, but can be
achieved between the long-term and short-term components, we conduct a second series of experiments
in which the input data are only divided into long term (LT, period >21 days) and short term (ST,
residuum).

Figure 1 shows the result of such a decomposition into four components. It can be seen that the BL
component decreases with time. The SY component fluctuates around zero with a moderate oscillation
between August 16 and 20. In the DU component, the day-to-day variability and diurnal oscillation
patterns are visible, and in the ID series, several positive and negative peaks are apparent. Overall, it can be
seen that the climatological statistical estimation of the future provides a reliable prediction. However,
since a slightly higher ozone episode from August 25 onward cannot be covered by the climatology, the
long-term component BL is slightly underestimated, but for time points up to t0, this has hardly any effect.
This small difference of a few parts per billion (ppb) is covered by the SYand DU components, so that the
residual component ID no longer contains any deviations.

2.2. Multibranch NN

The time series divided into individual components according to Section 2.1 serves as the input of an
MB-NN. In this work, we investigate three different types of MB-NNs based on fully connected,
convolutional, or recurrent layers. We therefore refer to the corresponding NNs in the following as
MB-FCN,MB-CNN, andMB-RNN. The respective filter components of all input variables are presented
together to one branch each. Thereby, each filter component leads to a distinct input branch in the NN. A
branch first learns the local characteristics of the oscillation patterns and can therefore also be understood
as its own subnetwork. Afterward, the MB-NN can learn global links, that is, the interaction of the
different scales, by a learned (nonlinear) combination of the individual branches in a subsequent network.
However, the individual branches are not trained separately, but the error signal propagates from the very
last layer backward through the entire network and then splits up between the individual branches.

The sample MB-NN shown on the left in Figure 2 consists of four input branches, each receiving a
component from the long-term ~x 0ð Þ (BL) to the residual x 3ð Þ (ID) of the filter decomposition. Here, the data
presented as example input are the same as in Figure 1, but each component has already been scaled to a
mean of zero and a standard deviation of 1, taking into account several years of data. In addition to the
characteristics of the example already discussed in Section 2.1, it can be seen from the scaling that the BL
component is above the mean, indicating a slightly increased long-term ozone concentration. The SY
component, on the other hand, shows only a weak fluctuation. The data are fed into four different
branches, each of which consists of an arbitrary architecture based on fully connected, convolutional, or
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recurrent layers. Subsequently, the information of these four subnetworks is concatenated and parsed in
the tail to a concluding neural block, which finally results in the output layer.

On the right side in Figure 2, only the decomposition into the two components LTand ST is applied. Since
the cutoff frequency is the same for LT and BL, the LT input is equal to the BL input. All short-term
components are combined and fed to the NN in the form of the ST component. This arbitrary MB-NN again
uses a specified type of neural layers in eachbranch before the information is interconnected in the concatenate
layer and then processed in the subsequent neural block, which finally leads to the output again. Figure 2
shows a generic view of the four-branch and two-branch NNs. The specific architectures employed in this
study are depicted in Section 3.3, Tables B2 and B3 in Appendix B, and Figures D1–D5 in Appendix D.

3. Experiment Setup

For data preprocessing and model training and evaluation, we employ the software MLAir (version 2.0.0;
Leufen et al., 2022).MLAir is a tool written in Python that was developed especially for the application ofML
to meteorological time series. The program executes a complete life cycle of an ML training, from
preprocessing to training and evaluation.Adetailed description ofMLAir can be found inLeufen et al. (2021).

Figure 1. Decomposition of an ozone time series into baseline (BL), synoptic (SY), diurnal (DU), and
intraday (ID) components at t0 ¼ August 19, 1999 (dark gray background) at an arbitrary sample site
(here DEMV004). Shown are the true observations x jð Þ

i (dashed light gray), the a priori estimation a jð Þ
i

about the future (solid light gray), the filtering of the time series composed of observation and a priori
information x

~

i
jð Þ t0ð Þ (solid black), and the response of a noncausal filter with access to future values

(dashed black) as a reference for a perfect filtering. Because of boundary effects, only values inside the
marked area (light gray background) are valid.
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3.1. Data

In this study, data from the Tropospheric Ozone Assessment Report database (TOAR DB; Schultz et al.,
2017) are used. This database collects global in situ observation datawith a special focus on air quality and
in particular on ozone. As part of the Tropospheric OzoneAssessment Report (TOAR, 2021), over 10,000
air quality measuring stations worldwide were inserted into the database. For the area over Central
Europe, these observations are supplemented by model reanalysis data interpolated to the measuring
stations, which originate from the consortium for small-scale modeling (COSMO) reanalysis with 6-km
horizontal resolution (COSMO-REA6; Bollmeyer et al., 2015). The measured data provided by the
German Environment Agency (Umweltbundesamt) are available in hourly resolution.

By following Kleinert et al. (2021), we choose a set of nine input variables. As regards chemistry, we
use the observation of O3 as well as the measured values of NO and NO2, which are important precursors
for ozone formation. In this context, it would be desirable to include other chemical variables and
especially volatile organic compounds (VOCs), such as isoprene and acetaldehyde, which have a crucial
influence on the ozone production regime (Kumar and Sinha, 2021). However, themeasurement coverage
of VOCs is very low, so that only very sporadic recordings are available, which would result in a rather
small dataset. Concerning meteorology, in addition to the wind in its individual components as well as the
height of the planetary boundary layer as an indicator for advection and mixing, we use temperature and
the cloud cover as a proxy for solar irradiance, and the relative humidity. All meteorological variables are

Figure 2. Sketching of two arbitrary MB-NNs with inputs divided into four components (BL, SY, DU, and
ID) on the left and two components (LTand ST) on the right. The input example shown here corresponds to
the data shown in Figure 1, whereby the components SY, DU, and ID on the right-hand side have not been
decomposed, but rather grouped together as the short-term component ST. Moreover, the data have
already been scaled. Each input component of a branch consists of several variables, indicated
schematically by the boxes in different shades of gray. The boxes identified by the branch name, also in
gray, each represent an independent neuronal block with user-defined layer types such as fully connected,
convolutional, or recurrent layers and any number of layers. Subsequently, the branches are then
combined via a concatenation layer marked as “C.” This is followed by a final neural block labeled as
“Tail,” which can also have any configuration and finally ends in the output layer of the NN indicated by
the tag “O3.” The sketches are based on a visualization with the Net2Vis tool (Bauerle et al., 2021).
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extracted from COSMO-REA6, but are treated in the following as if they were observations at the
measuring stations. Table 1 provides an overview of the observation and model variables used. The target
variable ozone is also obtained directly from the TOARDB.Rather than using the hourly values, however,
the daily aggregation to the daily maximum 8-hr average value according to the European Union
definition (dma8eu) is performed by the TOAR DB and extracted directly in daily resolution. It is
important to note that the calculation of dma8eu includes observations from 5 p.m. of the previous day
(cf. European Parliament and Council of the European Union, 2008). Care must therefore be taken that
ozone values from 5 p.m. on the day of t0 may no longer be used as inputs to ensure a clear separation, as
they are already included in the calculation of the target value.

This study is based on a relatively homogeneous dataset, so that the NNs can learn better and thus the
effect due to time series filtering becomes clearer. In order to obtain such a dataset of observations, we
restrict our investigations to the area of theNorthGerman Plain, which includes all areas inGermany north
of 52.5°N. We choose this area because of the rather flat terrain; no station is located higher than 150 m
above sea level. In addition, we restrict ourselves to measurement stations that are classified as
background according to the European Environmental Agency AirBase classification (European Parlia-
ment and Council of the European Union, 2008), which means that no industry or major road is located in
the direct proximity of the stations and consequently the pollution level of this station is not dominated by
a single source. All stations are located in a rural or suburban environment. These restrictions result in a
total number of 55 stations distributed over the entire area of the North German Plain. A geographical
overview can be found in Figure A2 in Appendix A. It should be noted that nomeasuring station provides
complete time series, so that gaps within the data occur. However, since the filter approach requires
continuous data, gaps of up to 24 consecutive hours on the input side and gaps of 2 days on the target side
are filled by linear interpolation along time.

3.2. Preparing of input and target data

The entire dataset is split along the temporal axis into training, validation, and test data. For this purpose,
all data in the period from January 1, 1997 to December 31, 2007 are used for training. The a priori
information of the time series filter about seasonal and diurnal cycles is calculated based on this set. The
following 2 years, January 1, 2008 to December 31, 2009, are used for the validation of the training, and

Table 1. Input and target variables with respective temporal resolution and origin. Data labeled with UBA originate from
measurement sites provided by the German Environment Agency, and data with flag COSMO-REA6 have been taken from
reanalysis.

Variable Origin Temporal resolution

Input NO UBA 1 hr

NO2 UBA 1 hr

O3 UBA 1 hr

Cloud cover COSMO-REA6 1 hr

Planetary boundary layer height COSMO-REA6 1 hr

Relative humidity COSMO-REA6 1 hr

Temperature COSMO-REA6 1 hr

Wind’s u-component COSMO-REA6 1 hr

Wind’s v-component COSMO-REA6 1 hr

Target dma8eu O3 UBA 1 day

Abbreviations: COSMO-REA6, consortium for small-scale modeling reanalysis with 6-km horizontal resolution; UBA, Umweltbundesamt.
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all data from January 1, 2010 onward are used for the final evaluation and testing of the trained model.
For the meteorological data, there are no updates in the TOAR DB since January 1, 2015, so more recent
air quality measurements cannot be used in this study.

For each time step t0, the time series is decomposed using the filter approach as defined in Section 2.1.
The a priori information is obtained from the training dataset alone so that validation and test datasets
remain truly independent. Afterward, the input variables are standardized so that each filter component of
each variable has a mean of zero and a standard deviation of 1 (Z-score normalization). For the target
variable dma8eu ozone, we choose the Z-score normalization as well. All transformation properties for
both inputs and targets are calculated exclusively on the training data and applied to the remaining subsets.
Moreover, these properties are not determined individually per station, but jointly across all measuring
stations.

In this work, we choose the number of past time steps for the input data as 65 hr. This corresponds to
the three preceding days minus the measurements starting at 5 p.m. on the current day of t0 due to the
calculation procedure of dma8eu as already mentioned. The number of time steps to be predicted is set to
the next 4 days for the target. All in all, we use almost 100,000 training samples and 20,000 and 30,000
samples for validation and testing, respectively (see Table 2 for exact numbers). The data availability at
individual stations, as well as the total number of different stations at each point in time, is shown in
Figures A1 and A3 in Appendix A, respectively. The visible larger data gaps are caused by a series of
missing values that exceed the maximum interpolation length.

3.3. Training setup and hyperparameter search

First, we search for an optimal decomposition of the input time series for the NNs by optimizing the
hyperparameters for the MB-FCN. Second, we use the most suitable decomposition and train different
MB-CNNs and MB-RNNs on these data. Finally, we train equivalent network architectures without
decomposition of the input time series to obtain a direct comparison of the decomposition approach as
outlined in Section 3.4. All experiments are assessed based on the mean square error (MSE), as presented
in Section 3.5. Since we are testing a variety of different models, we have summarized the most relevant
abbreviations in Table 3.

The experiments to find an optimal decomposition of the inputs and best hyperparameters for the MB-
FCN start with the same cutoff frequencies for decomposition as used in Kang et al. (2013), who divide
their data into the four components BL, SY, DU, and ID, as explained in Section 2.1. Since there is
generally no optimal a priori choice for a filter (Oppenheim and Schafer, 1975) and furthermore this is

Table 2. Number of measurement stations and resulting number of samples used in this study. All stations are classified as
background and situated either in a rural or suburban surrounding in the area of the North German Plain. Data are split along the
temporal axes into three subsequent blocks for training, validation, and testing.

Training Validation Testing

Stations

Rural 31 17 17

Suburban 24 15 13

Total 55 32 30

Samples

Rural 54,544 10,927 16,858

Suburban 40,968 10,405 13,622

Total 95,512 21,332 30,480
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likely to vary from one application to another, we choose a Kaiser filter (Kaiser, 1966) with a beta
parameter of β¼ 5 for the decomposition of the time series. We prefer this filter for practical consider-
ations, as a filter with a Kaiser window features a sharper gain reduction in the transition area at the cutoff
frequency in comparison to the KZ filter. Based on this, we test a large number of combinations of the
hyperparameters (see Table B1 in Appendix B for details). The trainedMB-FCNwith the lowest MSE on
the validation in this experiment is referred to as MB-FCN-BL/SY/DU/ID in the following. Since, as
already mentioned in Section 2.1, a clear decomposition in individual components is not always possible,
we start a second series of experiments in which the input data are only divided into long term (LT) and
short term (ST). We tested cutoff periods of 75 (Rao et al., 1997; Wise and Comrie, 2005) and 21 days
(Kang et al., 2013), and found no difference with respect to the MSE of the trained networks. Hence, we
selected the cutoff period of 21 days and refer to the trained network asMB-FCN-LT/ST in the following.
After finding an optimal set of hyperparameters for both experiments, we vary the input data and study the
resulting effect on the prediction skill. In two extra experiments, we add an additional branch with the
unfiltered raw data to the inputs. According to the previous labels, these experiments result in the NNs
labeled MB-FCN-BL/SY/DU/IDþraw and MB-FCN-LT/STþraw. We have summarized the optimal
hyperparameters for each of the MB-FCN architectures in Table B2 in Appendix B.

Based on the findings with the MB-FCNs, we choose the best MB-FCN and the corresponding
preprocessing and temporal decomposition of the input time series for the second part of the experiments,
in which we test more sophisticated network architectures. With the data remaining the same, we
investigate to what extent using MB-CNN or MB-RNN leads to an improvement compared to MB-
FCN and also in relation to their counterparts without temporal decomposition (CNN and RNN). For this
purpose, we test different architectures for CNN and RNN with and without temporal decomposition
separately and compare the best representative found by the experiment, respectively. The optimal
hyperparameters given by this experiments are outlined in Table B3 in Appendix B, and a visualization
of the best NNs can be found in Figures D1–D5 in Appendix D. Regarding the CNN architecture, we
varied the total number of layers and filters in each layer, the filter size, the use of pooling layers, as well as
the application of convolutional blocks after the concatenate layer and the layout of the final dense layers.
For the RNNs, during hyperparameter search, we used different numbers of LSTMcells per layer and tried
stacked LSTM layers. Furthermore, we added recurrent layers after the concatenate layer in some
experiments. In general, we tested different dropout rates, learning rates, a decay of the learning rate,
and several activation functions.

Table 3. Summary of model acronyms used in this study depending on their architecture and the number of input branches. The
abbreviations for the branch types refer to the unfiltered original raw data and either to the temporal decomposition into the four
components baseline (BL, period >21 days), synoptic (SY, period >2.7 days), diurnal (DU, period >11 hr), and intraday (ID,
residuum), or to the decomposition into two components long term (LT, period >21 days) and short term (ST, residuum). When
multiple input components are used, as indicated in the column labeled Count, the NNs are constructed with multiple input branches,
each receiving a single component, and are therefore referred to as multibranch (MB). For technical reasons, this MB approach is not
applicable to the OLS model, which instead uses a flattened version of the decomposed inputs and is therefore not specified as MB.

Input branches Model name

Branch type(s) Count FCN CNN RNN OLS

Raw 1 FCN CNN RNN OLS

LT and ST 2 MB-FCN-LT/ST MB-CNN-LT/ST MB-RNN-LT/ST OLS-LT/ST

LT, ST, and raw 3 MB-FCN-LT/STþraw – – –

BL, SY, DU, and ID 4 MB-FCN-BL/SY/DU/ID – – –

BL, SY, DU, ID, and raw 5 MB-FCN-BL/SY/DU/IDþraw – – –

Abbreviations: CNN, convolutional neural network; FCN; fully connected network; OLS, least squares regression.
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3.4. Reference forecasts

We compare the results of the trained NNs with a persistence forecast, which generally performs well on
short-term predictions (Murphy, 1992; Wilks, 2006). The persistence consists of the last observation, in
this case the value of dma8eu ozone on the day of t0, which serves as a prediction for all future days. We
also compare the results with climatological reference forecasts following Murphy (1988). Details are
given in Section 3.5. Furthermore, we compare the MB-NNs to an ordinary least squares regression
(OLS), an FCN, a CNN, and an RNN. The basis for these competitors is hourly data without special
preparation, that is, without prior decomposition into the individual components. The parameters of the
OLS are created analogously to the NNs on the training data only. For the FCN, CNN, and RNN, sets of
optimal parameters were determined experimentally in preliminary experiments also on training data.
Only the NNswith the lowestMSE on the validation data are shown here. Furthermore, as withMB-NNs,
we apply an OLS method to the temporally decomposed input data. For technical reasons, the OLS
approach is not able to work with branched data and therefore uses flattened inputs instead. Finally, we
draw a comparison with the IntelliO3-ts model fromKleinert et al. (2021). IntelliO3-ts is a CNN based on
inception blocks (see Section 1). In contrast to the study here, IntelliO3-ts was trained for the entire area of
Germany. It should be noted that IntelliO3-ts is based on daily aggregated input data, whereas all NNs
trained in this study use an hourly resolution of input data. For all models, the temporal resolution of the
targets is daily, so that the NNs of this study have to deal with different temporal resolutions, which does
not apply for IntelliO3-ts.

3.5. Evaluation methods

The evaluation of the NNs takes place exclusively on the test data that are unknown to the models.
To assess the performance of the NNs, we examine both absolute and relative measures of accuracy.
Accuracy measures generally represent the relationship between a prediction and the value to be
predicted. Typically, for an absolute measure of the predictive quality on continuous values, the MSE
is used. The MSE is a good choice as a measure because it takes into account the bias as well as the
variances and the correlation between prediction and observation. To determine the uncertainty of the
MSE, we choose a resampling test procedure (cf. Wilks, 2006). Due to the large amount of data, a
bootstrap approach is suitable. Synthetic datasets are generated from the test data by repeated blockwise
resamplingwith replacement. For each set, the error, in our case theMSE, is calculated.With a sufficiently
large number of repetitions (here n¼ 1,000), we can access an estimate of the error uncertainty. To reduce
misleading effects caused by autocorrelation, we divide the test data along the time axis into monthly
blocks and draw from these instead of the individual values.

To compare individual models directly with each other, we derive a skill score from the MSE as a
relative measure of accuracy. In this study, the skill score always consists of theMSE of the actual forecast
as well as the MSE of the reference forecast and is given by

SS¼ 1� MSE

MSEref
: (13)

Accordingly, a value around zero means that no improvement over a reference could be achieved.
If the skill score is positive, an improvement can generally be assumed, and if it is negative, the prediction
accuracy is below the reference.

For the climatological analysis of the NN, we refer to Murphy (1988), who determines the climato-
logical quality of a model by breaking down the information into four cases. In Case 1, the forecast is
compared with an annual mean calculated on data that are known to themodel. For this study, we consider
both the training and validation data to be internal data, since the NN used these data during training and
hyperparameter search. Case 2 extends a climatological consideration by differentiating into 12 individual
monthly averages. Cases 3 and 4, respectively, are the corresponding transfers of the aforementioned
analyses, but on test data that are unknown to the model.
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Another helpful method for the verification of predictions is the consideration of the joint distribution
p yi,oj
� �

of prediction yi and observation oj (Murphy and Winkler, 1987). The joint distribution can be
factorized to shed light on particular facets. With the calibration-refinement factorization

p yi,oj
� �¼ p ojjyi

� � �p yið Þ, (14)

the conditional probability p ojjyi
� �

and the marginal distribution of the prediction p yið Þ are considered.
p ojjyi
� �

provides information on the probability of each possible event oj occurring when a value yi is
predicted, and thus how well the forecast is calibrated. p yið Þ indicates the relative frequency of the
predicted value. It is desirable to have a distribution of y with a width equal to that for o.

3.6. Feature importance analysis

Due to the NN’s nonlinearity, the influence of individual inputs or variables on the model is not always
directly obvious. Therefore, we again use a bootstrap approach to gain insight into the feature importance.
In general, we remove a certain piece of information and examine the skill score in comparison to the
original prediction to see whether the prediction quality of the NN decreases or increases as a result. If the
skill score remains constant, this is an indication that the examined information does not provide any
additional benefit for the NN. The more negative the skill score becomes in the feature importance
analysis, the more likely it is that the examined variable contains important information for the NN. In the
unlikely case of a positive skill score, it can be inferred that the context of this variable was learned
incorrectly and thus disturbs the prediction.

For the feature importance analysis, we take a look at three different cases. First, we analyze the
influence of the temporal decomposition by destroying the information of an entire input branch, for
example, all low-frequent components (BL resp. LT). This yields information about the effect of the
different time scales from long term to short term and the residuum. In the second step, we adopt a different
perspective and look at complete variables with all temporal components (e.g., both LT and ST
components of temperature). In the third step, we drive down one tier and consider each input separately
to get information about whether a single input has a very strong influence on the prediction (e.g., BL
component of NO2).

To break down the information for the feature importance analysis, we randomly draw the quantity to
be examined from its observations. Statistically, a test variable obtained in this way is sampled from the
same distribution as the original variable. However, the test variable is detached from its temporal context
as well as from the context of other variables. This procedure is repeated 100 times to reduce random
effects.

The feature importance analysis considers only the influence of a single quantity and no pairwise or
further correlations. However, the isolated approach already provides relevant information about the
feature importance. It is important to note that this analysis can only show the importance of the inputs for
the trained NN and that no physical or causal relationships can be deduced from this kind of analysis in
general.

4. Results

Since a comparison of all models against each other would quickly become incomprehensible, we first
look at the results of the resampling in order to obtain a ranking of MB-FCNs (see Table 3 for a summary
of model acronyms). The results of the bootstrapping are shown in Figure 3 and listed also in Table C1 in
Appendix C.With a block length of 1 month and 1,000 repetitions of the bootstrapping, it can be seen that
the simple FCN cannot adequately represent the relationships between inputs and targets in comparison to
the other models. Moreover, it is visible that the performance of theMB-FCN-BL/SY/DU/ID falls behind
in comparison to the other MB-FCNs with an average MSE> 70ppb2. The smallest resampling errors
could be achieved with the models MB-FCN-BL/SY/DU/IDþraw, MB-FCN-LT/ST, and MB-FCN-LT/
STþraw.
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When comparing the decomposition into BL/SY/DU/ID and the decomposition into LT/ST compo-
nents, the latter decomposition tends to yield a lower error. Alternatively, it is possible to achieve
comparative performance by adding the raw data to both variants of decomposition. For the LT/ST
decomposition, however, this improvement is marginal.

Since the forecast accuracy of the top three NNs is nearly indistinguishable, especially for the two
models with the LT/STsplit, we choose theMB-FCN-LT/ST network and so the LT/ST decomposition for
further analysis, since, of the three winning candidates, this is the network with the smallest number of
trainable parameters (see Table B2 in Appendix B).

So far, we have shown the advantages of an LT/ST decomposition during preprocessing for FCNs.
Therefore, in the following, we apply our proposed decomposition to more elaborated network archi-
tectures, namely a CNN and an RNN architecture. We again consider the uncertainty estimation of the
MSE using the bootstrap approach and calculate the skill score with respect to theMSE in pairs for an NN
type that was trained once as anMB-NNwith temporally decomposed inputs and oncewith the raw hourly
data. Similarly, we consider the skill score of OLS on decomposed and raw data, respectively. The results
are shown in Figure 4. It can be seen that the skill score is always positive for all models. This in turn
means that using our proposed time decomposition of the input time series improves all the models
analyzed here.When looking at the individual models, it can be differentiated that the FCN architecture in
particular benefits from the decomposition, whereas the improvement is smaller for RNN and smallest but
still significant for OLS and CNN.

Based on the uncertainty estimation of the MSE shown in Figure 5 and also listed in Table C2 in
Appendix C, the models can be roughly divided into three groups according to their average MSE. The
last group consists solely of the persistence prediction, which delivers a significantly worse prediction
than all other methods and lies at anMSE of 107 ppb2 on average. In the intermediate group with anMSE
between 70 and 80 ppb2, only approaches that do not use temporally decomposed inputs are found,
including the IntelliO3-ts-v1 model. Overall, the FCN performs worst with a mean MSE of 78 ppb2, and
the best results in this group are achieved with the CNN. In the leading group are exclusivelymethods that
rely on the decomposition of the input time series. TheOLSwith the LT/ST decomposition has the highest
error within this group with 68 ppb2. The lowest errors can be obtained with the MB-FCN and the MB-
RNN, whereby the MSE for both NNs is around 66 ppb2.

Figure 3. Results of the uncertainty estimation of the MSE using a bootstrap approach represented as
box-and-whiskers. For each model, the median is shown as a black vertical line, the mean as a green
triangle, the upper and lower quartiles in the form of the box, the upper and lower whiskers, which
correspond to 1.5 times the interquartile range, and outliers beyond the whiskers as individual data
points. The models are ordered from top to bottom with ascending average MSE. A total of 1,000
bootstrap samples were created by resampling with the replacement of single-month blocks.
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Figure 5. The same as Figure 3, but for a different set of models. Results of the uncertainty estimation of
the MSE using a bootstrap approach represented as box-and-whiskers. For each model, the median is
shown as a black vertical line, the mean as a green triangle, the upper and lower quartiles in the form of
the box, the upper and lower whiskers, which correspond to 1.5 times the interquartile range, and outliers
beyond the whiskers as individual data points. The models are ordered from top to bottom with ascending
average MSE. A total of 1,000 bootstrap samples were created by resampling with the replacement of
single-month blocks. Note that the uncertainty estimation shown here is independent of the results shown
in Figure 3, and therefore numbers may vary for statistical reasons.

Figure 4. Pairwise comparison of different models running with temporal decomposed or raw data by
calculating the skill score on the results from the uncertainty estimation of the mean square error using a
bootstrap approach represented as box-and-whiskers. For each model, the median is shown as a black
vertical line, the mean as a green triangle, the upper and lower quartiles in the form of the box, the upper
and lower whiskers, which correspond to 1.5 times the interquartile range, and outliers beyond the
whiskers as individual data points. A total of 1,000 bootstrap samples were created by resamplingwith the
replacement of single-month blocks.

Lukas H. Leufen et al. e10-15

https://doi.org/10.1017/eds.2022.9 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2022.9


In order to understand why the decomposition consistently brings about an improvement for all
methods considered here, we look exemplarily at the MB-FCN-LT/ST in more detail in the following.
However, it should bementioned that the discussed aspects are also basically valid for the other NN types.

First, we have a look at the calibration-refinement factorization of the joint distribution (Figure 6)
according to equation (14). It can be seen that the distribution of the forecasted concentration of ozone
becomes narrower toward the mean with increasing lead time. While the MB-FCN-LT/ST is still able to
predict values of >70 ppb for the 1-day forecast, it is limited to values below 60 ppb for the 4-day forecast
and tends to underestimate larger concentrations with increasing lead time. According to the conditional
probability of observing an issued forecast, theMB-FCN-LT/ST is best calibrated for the first forecast day
and especially in the value range from 20 to 60 ppb. However, observations of high ozone concentrations,
starting from values above 60 ppb, are generally underestimated by the NN. Coupled with the already
mentioned narrowing of the forecast’s distribution, the underestimation of high ozone concentrations
increases with lead time.

The shortcomings with the prediction of the tails of the distribution of observations are also evident
when looking at the seasonal behavior of the MB-FCN-LT/ST. Figure 7 summarizes the distribution of
observations and predictions of the NN for each month. The narrowing toward the mean with increasing
lead time is also clearly visible here in the whiskers and the interquartile range in the form of the box.
However, it can already be observed that, from a climatological perspective, the forecasts are in the range

Figure 6. Joint distribution of prediction and observation in the calibration-refinement factorization
p yi,oj
� �

for theMB-FCN-LT/ST for all four lead times. On the one hand, themarginal distribution p yið Þ of
the prediction is shown as a histogram in gray colors with the axis on the right, and on the other hand,
the conditional probability p ojjyi

� �
is expressed by quantiles in the form of differently dashed lines.

The reference line of a perfectly calibrated forecast is also shown as a solid line.
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of the observations, and the annual cycle of the ozone concentration can bemodeled. Yet themonth of July
stands out in particular, where it is clearly recognizable that the NN is not able to represent the large
variability of values from 20 ppb to values over 100 ppb that occur during summer.

The direct comparison according to Murphy (1988) between the climatological annual mean of the
observation and the forecast of the NN for the training and validation data (Case 1) as well as for the test
data (Case 3) shows a high skill score in favor of the NN compared to the single-valued climatological
reference as the NN captures the seasonal cycle (Figure 7). Furthermore, in direct comparison with the
climatological monthly means (Cases 2 and 4), the MB-FCN-LT/ST can achieve an added value in terms
of information. However, the skill score on all datasets decreases gradually with longer lead times.
Nonetheless, a nearly continuously positive skill score shows that the seasonal pattern of the observations
can be simulated by the NN.

The feature importance analysis provides insight on which variables the MB-FCN-LT/ST generally
relies upon. An examination of the importance of the individual branches, as shown in Figure 8, shows
that, for the first forecast day, both LT and ST have a significant influence on the forecast accuracy. For
longer forecast horizons, this influence decreases visibly, especially for ST. It is worth noting here that the
influence of LT decreases less for Days 2–4, remaining at an almost constant level. Consequently, the
long-term components of the decomposed time series have an important influence on all forecasts.

Looking at the importance of each variable with its components shows first of all that the NN is
strongly dependent on the input ozone concentration. This dependence decreases continuously with lead
time. Important meteorological drivers are temperature, relative humidity, and planetary boundary layer
height. All these variables diminish in importance with increasing forecast horizon, analogously to the
importance of the ozone concentration. On the chemical side, NO2 also has an influence. Here, it must be
emphasized that, in contrast to the other variables, the influence does not decrease with lead time, but
remains constant over all forecast days. From the feature importance, we can see that the trained model
does not make extensive use of information from wind, NO, or cloud cover.

Isolating the effects of the individual inputs in the LT branch shows that the NN is hardly dependent on
the long-term components of the input variables apart from ozone (see Figure 9). The importance of ozone
is higher on Day 1 than on the following days, but then remains at a constant level. For the short-term
components, the concentration of ozone is also decisive. However, its influence decreases rapidly from
the 1-day to the 2-day forecast. The individual importance of the ST components of the other input
variables behaves in the same way as the overall importance of these variables.

Figure 7. Overview of the climatological behavior of the MB-FCN-LT/ST forecast shown as a monthly
distribution of the observation and forecasts on the left and the analysis of the climatological skill score
according to Murphy (1988) differentiated into four cases on the right. The observations are highlighted
in green and the forecasts in blue. As in Figure 3, the data are presented as box-and-whiskers, with the
black triangle representing the mean.
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As previously mentioned, the points discussed before can be more or less transferred to the other NN
architectures. The feature importance analysis of the branches and the individual variables for MB-CNN
andMB-RNN is shown in Figures E1–E3 in Appendix E. In particular, the LT for all forecast days and the
ST for the first day contain important information, with the ST branch being less relevant for the MB-
RNN. Moreover, MB-CNN and MB-RNN also show a narrowing of the distribution of issued forecasts
with increasing lead time, as was also observed for MB-FCN.

5. Discussion

The experimental results described in the previous section indicate that the NNs learn oscillation patterns
on different time scales, and in particular climatological properties, better when the input time series are
explicitly decomposed into different temporal components. The MB-NNs outperform all reference

Figure 8. Importance of single branches (left) and single variables (right) for the MB-FCN-LT/ST using
bootstrapping. In blue colors, the skill score for lead times from 1 day (light blue) to 4 days (dark blue) is
shown. A negative skill score indicates a strong influence on the forecast performance. The skill score is
calculated with the original undisturbed prediction of the same NN as reference. Note that due to the
significantly stronger dependence, ozone is visualized on a separate scale.

Figure 9. Importance of single inputs for the LT branch (left) and the ST branch (right) for the MB-FCN-
LT/ST using a bootstrap approach. In blue colors, the skill score for lead times from 1 day (light blue) to
4 days (dark blue) is shown. A negative skill score indicates a dependence. The skill score is calculated
with the original undisturbed prediction of the same NN as reference.
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models, such as simple statistical regression methods as well as the naïve persistence forecasts and
climatological references. The MB-NNs are also preferable to their corresponding counterparts without
temporal decomposition, considered individually but also as a collective.

The uncertainty estimate of the MSE of the forecast shows that FCNs that either use a decomposition
into a long-term and a short-term component or access unfiltered raw data as a supplementary source of
information have the highest forecast accuracy. Separating the input signals into more than two
components without adding the unfiltered raw data cannot improve the performance of the FCNs, with
respect to the architectures chosen in this study. This recognition coincides with the findings of Kang et al.
(2013), who show that a clear separation of the short-term components is generally not possible due to the
superposition of multiple oscillation patterns.

With regard to the network architecture, several key points can be identified in this study. Without
special processing of the input data, the best results were achieved with a CNN architecture. This could be
explained by the fact that the convolutional layers of the CNN already filter the time series. However, it
must also be mentioned that with a filter size of only 5 hr, there is no chance to extract an annual cycle, so
that the explicit decomposition into LTand STcomponents also offers added value for the CNN.However,
due to the higher baseline level, the MB-CNN cannot benefit as much from the data processing compared
to the MB-FCN and MB-RNN and is moreover behind the other two MB-NNs in terms of prediction
quality in absolute terms. The RNN also achieves better results on the unfiltered data than the FCN, for
example, because it can benefit from amore specific understanding of time. The FCN is therefore inferior
to the CNN and RNN due to its comparatively simple architecture and the lack of possibility to relate
neighboring data points explicitly. However, it benefits most from the temporal decomposition of the
inputs, so that these disadvantages disappear, and overall, the smallest errors can be achieved with MB-
FCN and MB-RNN. These finding therefore highlight the importance of jointly optimizing data
preprocessing and NNmodel architecture, which is taught in many ML courses, but not always followed
in practical applications.

The difficulties of NNs to recognize annual patterns in daily resolved data noted by Cho et al. (2014)
did not apply to the MB-NNs. However, the networks still encounter difficulties in anticipating very low
and very high ozone concentrations. As the lead time increases, the NN’s forecast strategy becomes more
cautious about extremes, leading to a narrowing of the distribution of issued forecasts. Despite this
circumstance, the NNs always retain within an optimal range from a climatological point of view, so that
the forecast has higher accuracy than a climatological forecast. The analysis of the feature importance can
provide an explanation for this. For the first day of the forecast, both long-term and short-term
components have an equally strong influence on the MB-FCN forecast, but for a longer forecast horizon,
the long-term components are given more weight. Accordingly, the LT branch in particular enables the
NN to generate a climatologicallymeaningful forecast. In addition, theNN remains strongly dependent on
the ozone concentrations from the inputs. Learning a form of autocorrelation is advantageous for
climatological accuracy, but at the same time leads to a poorer representation of scarcer events such as
sudden and strong increases in the daily maximum concentration from one day to the next.

In addition, it must be mentioned that strong deviations from climatological norm states also have an
impact on the filter decomposition of the inputs, since climatology can only be an estimate of a long-term
mean state, which can deviate strongly from the actual weather in individual cases. For example, the long-
term signal of temperature in the case of a very warm summer would be weakened by the added
climatology, since such a deviation represents an exceptional case from a climatological point of view.
In this case, the second filter component, which should actually be free of an annual variation, also
contains a proportion of an annual oscillation. However, as discussed in Section 2, this combination
allows to apply noncausal filters in a forecasting situation, where generally only causal filters are
applicable, which lead to phase shifts in the data and show larger errors.

A look at the importance of the individual inputs for the MB-FCN yields two views. First, it becomes
apparent that the dependency of the LTand STcomponents are each strongly based on the corresponding
component of the ozone concentration and that the MB-FCN accordingly learns the connection between
observed hourly ozone values and the target ozone statistic. Second, all other variables seem to have an
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influence only on the short-term scale. Since the STcomponent by definition represents the deviation from
the climatological normal state, it can be seen that theMB-FCN relies on the deviation from normal states
as a forecasting strategy.

Finally, we would like to discuss the filters used for the decomposition. Since there are many different
types of filters with various advantages and disadvantages, we have limited this work to the use of a Kaiser
window and have not carried out any further experiments with different types of filters, such as the KZ
filter, which could possibly lead to an improved separation of individual components as stated in Rao and
Zurbenko (1994) in the presence of a weather forecast. Furthermore, we have not undertaken any in-depth
investigations into which separation frequencies lead to an optimal decomposition of the time series.

6. Conclusion

In this work, we explored the potential of training different NNs, namely FCN, CNN, and RNN, for
dma8eu ozone forecasting using inputs decomposed into different frequency components from long term
to short term with noncausal filters in order to improve the forecast accuracy of the NNs. The temporal
decomposition of the inputs not only improves the different NN architectures and the linear OLS model,
but also offers an overall added value for the prediction of ozone compared to all reference models using
raw hourly inputs and naïve approaches based on persistence and climatology. As exemplary shown with
theMB-FCN, theMB-NNs work better with a decomposition into two components compared to four and
they rely on both long-term and short-term components for their prediction, with a strong dependence on
past ozone observations and a decreasing importance of the short-term components with lead time. In
order to realize a valid decomposition in a forecast setupwithout time delay of the signal introduced by the
filter itself, a combination of observations and a priori information in the form of climatology was chosen.
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Appendix A: Details on Data

Figure A1.Graphical representation of the number of samples available for training (orange), validation
(green), and testing (blue) per time step. Apart from three periods in which the data cannot meet the
requirements, more than 20 stations are available at each time step, and for training in particular, more
than 30 stations for themost time. The graph does not show the available raw data, but indicates for which
time steps t0 a sample with fully processed input and target values is available.

Figure A2. Geographical location of all rural and suburban monitoring stations used in this study
divided into training (orange), validation (green), and test (blue) data represented by triangles in the
corresponding colors. The tip of the triangles points to the exact location of the station.
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Figure A3.Detailed overview of the availability of station data broken down for all individual stations as
a timeline separated by color for training (orange), validation (green), and test (blue) data. Individual
gaps are caused by missing observation data that exceed the interpolation limit of 24 hr for inputs or
2 days for targets.
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Appendix B: Details on Hyperparameter Search

Table B1. Details on tested hyperparameters for the MB-FCNs. The square brackets indicate a continuous parameter range, and the
curly brackets indicate a fixed set of parameters. Parameter spaces covering different orders of magnitude were sampled on a
logarithmic scale. For details on the activation functions, we refer to rectified linear unit (ReLU) and leaky rectified linear unit
(LeakyReLU, Maas et al., 2013), exponential linear unit (ELU, Clevert et al., 2016), scaled exponential linear unit (SELU,
Klambauer et al., 2017), and parametric rectified linear unit (PReLU, He et al., 2015).

Parameter Parameter range

Learning rate 0:1,0:0001½ �
Learning rate decay 0,0:0001½ �
Batch size 64,128,256,512f g
Activation function relu, leakyrelu,elu,selu,preluf g
Dropout 0,0:5½ �
Batch normalization true, falsef g
Branch layers 512=256=128,512=128=32,512=64,512=32,256=128=64=32,256=64,128=64,128=32,64=32f g
Tail layers 4,32=4,64=4f g

Table B2. Summary of best hyperparameters and fixed parameters for different setups with MB-FCN. The entire parameter ranges
of all hyperparameters are given in Table B1. Details on the activation functions can be found in He et al. (2015) for the parametric
rectified linear unit (PReLU) and in Clevert et al. (2016) for the exponential linear unit (ELU). A visualization of MB-FCN-LT/ST
can be found in Figure D1 in addition.

Parameter
MB-FCN-BL/
SY/DU/ID

MB-FCN-
LT/ST

MB-FCN-BL/SY/
DU/IDþraw

MB-FCN-LT/
STþraw

Hyperparameters

Learning rate 0.00033 0.1 0.00027 0.0002

Learning rate decay 0.001 0.007 0.0001 0.0002

Batch size 512 512 512 256

Activation function PReLU ELU ELU ELU

Dropout 0.3 0.56 0.28 0.43

Batch normalization True True True True

Branch layers 64/32 128/64 64/32 128/64

Tail layers 64/4 4 4 4

Layers summary 4x(585/64/32)-64/4 2x(585/128/64)-4 5x(585/64/32)-4 3x(585/128/64)-4

Trainable parameters 168,196 167,812 199,524 251,716

Fixed

Cutoff period(s) 21 days, 2.7 days, 11 hr 21 days 21 days, 2.7 days, 11 hr 21 days

Filter order(s) 42 days, 7 days, 2 days 42 days 42 days, 7 days, 2 days 42 days

filter window Kaiser (β¼ 5) Kaiser (β¼ 5) Kaiser (β¼ 5) Kaiser (β¼ 5)

Use unfiltered raw inputs False False True True

Number of epochsa 150 150 150 150

Abbreviation: FCN, fully connected network.
aWith early stopping.
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Appendix C: Tabular Results

Table B3. Summary of best hyperparameters and fixed parameters for experiments with the CNN, MB-CNN, RNN, and MB-RNN.
The entire parameter ranges of all hyperparameters are not listed. Details on the activation functions can be found in Maas et al.
(2013) for the rectified linear unit (ReLU) and the leaky rectified linear unit (LeakyReLU) and in He et al. (2015) for the parametric
rectified linear unit (PReLU).

Parameter CNN MB-CNN RNN MB-RNN

Hyperparameters

Learning rate 0.057 0.1668 0.0009 0.0123

Learning rate decay 0.006 0.009 0.0006 0.015

Activation function PReLU PReLU ReLU LeakyReLU

Dropout 0.43 0.42 0.5 & 0.17 (recurrent) 0.23 & 0 (recurrent)

Batch normalization Conv and FC Conv and FC only LSTM only LSTM

Filter size 5 � 1 5 � 1 – –

(Branch) layersa C16/MP/C32/MP/C64 C16/MP/C32/MP/C64 LSTM64 LSTM32

Tail/dense layers 256/4 256/4 128/4 128/4

Trainable parameters 281,140 560,228 27,908 19,716

Fixed

Number of epochsb 250 250 100 100

Batch size 512 512 512 512

Abbreviations: CNN, convolutional neural network; LSTM, long short-term memory.
aC<n>: Conv2D with n filters; LSTM<n>: LSTM layer with n LSTM cells; MP: MaxPooling.
bWith early stopping.

Table C1. Key numbers of the uncertainty estimation of the MSE for all MB-FCNs as an average over all prediction days using the
bootstrap approach visualized in Figure 3. All reported numbers are in the unit of square parts per billion. Numbers in percentage
point to the corresponding percentile of the error distribution.

MB-FCN-BL/
SY/DU/ID

MB-FCN-BL/SY/
DU/IDþraw MB-FCN-LT/ST MB-FCN-LT/STþraw FCN

Mean 71.83 67.88 67.12 66.72 77.51

Min 56.56 55.15 57.38 56.17 67.01

Lower whisker 59.15 56.41 57.38 56.17 68.22

25% 68.53 64.92 64.25 63.70 75.25

50% 71.67 67.72 66.99 66.54 77.42

75% 74.78 70.59 69.69 69.40 79.94

Higher whisker 84.16 79.09 77.86 77.93 86.97

Max 87.52 82.17 80.89 80.59 91.75

Abbreviations: FCN, fully connected network; MSE, mean square error.
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Appendix D: Model Architecture

Table C2. Key numbers of the uncertainty estimation of the MSE as an average over all prediction days using the bootstrap approach
visualized in Figure 5. All reported numbers are in the unit of square parts per billion. Numbers in percentage point to the
corresponding percentile of the error distribution. Note that the uncertainty estimation reported here is independent of the results
shown in Table C1, and therefore numbers may vary for statistical reasons.

CNN FCN IntelliO3
MB-CNN-
LT/ST

MB-FCN-
LT/ST

MB-RNN-
LT/ST

OLS-
LT/ST OLS Persistence RNN

Mean 71.94 78.02 74.59 67.28 66.41 66.08 67.84 72.41 107.89 72.26

Min 41.93 50.74 40.75 39.85 38.52 38.12 40.03 40.87 52.66 42.49

25% 60.52 69.90 62.47 57.43 57.20 55.55 58.85 59.99 83.80 61.88

50% 75.66 80.53 77.36 70.27 69.33 69.56 71.09 76.93 115.17 75.38

75% 82.32 86.49 85.63 76.75 75.44 75.77 76.95 83.40 130.46 82.02

Max 105.92 107.01 121.41 101.99 98.55 99.63 98.38 104.31 168.47 105.20

Abbreviations: CNN, convolutional neural network; FCN, fully connected network; MSE, mean square error; OLS, least squares regression.

Figure D1.Visualization ofMB-FCN-LT/STusing the tool Net2Vis (Bauerle et al., 2021). Shown from left
to right are the input data, followed by the flattened layer and two fully connected layers (FC) with
128 and 64 neurons. In total, the neural network has two such branches, whose weights can be trained
independently of each other. All branches are concatenated and bounded by the output layer with four
neurons. The orange FC block consists of a fully connected layer, a batch normalization layer, and an
exponential linear unit activation. The output layer contains only a fully connected layer followed by a
linear activation. The dropout layers are highlighted in purple, and all other remaining layers with
nontrainable parameters are shown in gray.
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Figure D2. Visualization of a convolutional neural network as in Figure D1. In addition, this neural
network consists of convolutional blocks highlighted in blue and MaxPooling layers shown in yellow.
Each convolutional block consists of a convolutional layer with a kernel size of 5 � 1 and the same
padding, followed by a batch normalization layer and a parametric rectified linear unit (PreLU)
activation. TheMaxPooling layers use a pooling size of 2� 1 and strides with 2� 1. The FC blocks in this
model consist of the fully connected layer, batch normalization, and a PReLU activation.

Figure D3. Visualization of a multibranch convolutional neural network as in Figure D2.

Figure D4. Visualization of RNN as in Figure D1. In addition, the neural network shown here consists of
long short-term memory layer (LSTM) blocks indicated in green. Each LSTM block includes an LSTM
layer with a given number of LSTM cells within followed by a batch normalization layer and a rectified
linear unit (ReLU) activation function. Note that the dropout shown here is not the recurrent dropout, but
the regular dropout that is applied on the activation of a layer. The FC block also uses a ReLU activation
function, but no batch normalization.
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Appendix E: Feature Importance of MB-CNN and MB-RNN

Figure D5. Visualization of MB-RNN as in Figure D4. Deviating here, the activation is LeakyReLU both
for the long short-term memory layer and the FC layer.

Figure E1. Importance of single branches for multibranch convolutional neural network (left) and
multibranch recurrent neural network (right) as in Figure 8.

Figure E2. Importance of single inputs for the LT branch (left) and the ST branch (right) for the
multibranch convolutional neural network.
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Figure E3. Importance of single inputs for the LT branch (left) and the ST branch (right) for the
multibranch recurrent neural network.
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