| Hauptseite > Publikationsdatenbank > Study of LiCoO 2 /Li 7 La 3 Zr 2 O 12 :Ta Interface Degradation in All-Solid-State Lithium Batteries > print |
| 001 | 908471 | ||
| 005 | 20240725202006.0 | ||
| 024 | 7 | _ | |a 10.1021/acsami.1c22246 |2 doi |
| 024 | 7 | _ | |a 1944-8244 |2 ISSN |
| 024 | 7 | _ | |a 1944-8252 |2 ISSN |
| 024 | 7 | _ | |a 2128/31433 |2 Handle |
| 024 | 7 | _ | |a altmetric:123880254 |2 altmetric |
| 024 | 7 | _ | |a 35226453 |2 pmid |
| 024 | 7 | _ | |a WOS:000787543300021 |2 WOS |
| 037 | _ | _ | |a FZJ-2022-02624 |
| 082 | _ | _ | |a 600 |
| 100 | 1 | _ | |a Ihrig, Martin |0 P:(DE-Juel1)174298 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Study of LiCoO 2 /Li 7 La 3 Zr 2 O 12 :Ta Interface Degradation in All-Solid-State Lithium Batteries |
| 260 | _ | _ | |a Washington, DC |c 2022 |b Soc. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1721884639_2788 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The garnet-type Li7La3Zr2O12 (LLZO) ceramic solid electrolyte combines high Li-ion conductivity at room temperature with high chemical stability. Several all-solid-state Li batteries featuring the LLZO electrolyte and the LiCoO2 (LCO) or LiCoO2–LLZO composite cathode were demonstrated. However, all batteries exhibit rapid capacity fading during cycling, which is often attributed to the formation of cracks due to volume expansion and the contraction of LCO. Excluding the possibility of mechanical failure due to crack formation between the LiCoO2/LLZO interface, a detailed investigation of the LiCoO2/LLZO interface before and after cycling clearly demonstrated cation diffusion between LiCoO2 and the LLZO. This electrochemically driven cation diffusion during cycling causes the formation of an amorphous secondary phase interlayer with high impedance, leading to the observed capacity fading. Furthermore, thermodynamic analysis using density functional theory confirms the possibility of low- or non-conducting secondary phases forming during cycling and offers an additional explanation for the observed capacity fading. Understanding the presented degradation paves the way to increase the cycling stability of garnet-based all-solid-state Li batteries. |
| 536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Finsterbusch, Martin |0 P:(DE-Juel1)145623 |b 1 |
| 700 | 1 | _ | |a Laptev, Alexander |0 P:(DE-Juel1)164315 |b 2 |u fzj |
| 700 | 1 | _ | |a Tu, Chia-hao |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Tran, Ngoc Thanh Thuy |0 0000-0001-6419-3655 |b 4 |
| 700 | 1 | _ | |a Lin, Che-an |0 P:(DE-Juel1)194134 |b 5 |u fzj |
| 700 | 1 | _ | |a Kuo, Liang-Yin |0 P:(DE-Juel1)178838 |b 6 |
| 700 | 1 | _ | |a Ye, Ruijie |0 P:(DE-Juel1)176118 |b 7 |u fzj |
| 700 | 1 | _ | |a Sohn, Yoo Jung |0 P:(DE-Juel1)159368 |b 8 |u fzj |
| 700 | 1 | _ | |a Kaghazchi, Payam |0 P:(DE-Juel1)174502 |b 9 |u fzj |
| 700 | 1 | _ | |a Lin, Shih-kang |0 P:(DE-HGF)0 |b 10 |
| 700 | 1 | _ | |a Fattakhova-Rohlfing, Dina |0 P:(DE-Juel1)171780 |b 11 |
| 700 | 1 | _ | |a Guillon, Olivier |0 P:(DE-Juel1)161591 |b 12 |u fzj |
| 773 | _ | _ | |a 10.1021/acsami.1c22246 |g Vol. 14, no. 9, p. 11288 - 11299 |0 PERI:(DE-600)2467494-1 |n 9 |p 11288 - 11299 |t ACS applied materials & interfaces |v 14 |y 2022 |x 1944-8244 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/908471/files/Study%20of%20LiCoO%202%20Li%207%20La%203%20Zr%202%20O%2012%20Ta%20Interface%20Degradation%20in%20All-Solid-State%20Lithium%20Batteries.pdf |y Published on 2022-02-28. Available in OpenAccess from 2023-02-28. |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/908471/files/acsami.1c22246.pdf |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:908471 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)174298 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)145623 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)164315 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)194134 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)178838 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)176118 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)159368 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)174502 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)171780 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)161591 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-11 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-11 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS APPL MATER INTER : 2021 |d 2022-11-11 |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b ACS APPL MATER INTER : 2021 |d 2022-11-11 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|