000908477 001__ 908477
000908477 005__ 20240712084518.0
000908477 0247_ $$2doi$$a10.1039/D1SC06401K
000908477 0247_ $$2ISSN$$a2041-6520
000908477 0247_ $$2ISSN$$a2041-6539
000908477 0247_ $$2Handle$$a2128/32050
000908477 0247_ $$2pmid$$a35655867
000908477 0247_ $$2WOS$$aWOS:000781235700001
000908477 037__ $$aFZJ-2022-02630
000908477 082__ $$a540
000908477 1001_ $$0P:(DE-Juel1)180551$$aRavishankar, Sandheep$$b0$$eCorresponding author
000908477 245__ $$aInterpretation of Mott–Schottky plots of photoanodes for water splitting
000908477 260__ $$aCambridge$$bRSC$$c2022
000908477 3367_ $$2DRIVER$$aarticle
000908477 3367_ $$2DataCite$$aOutput Types/Journal article
000908477 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1666072254_30573
000908477 3367_ $$2BibTeX$$aARTICLE
000908477 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908477 3367_ $$00$$2EndNote$$aJournal Article
000908477 520__ $$aA large body of literature reports that both bismuth vanadate and haematite photoanodes are semiconductors with an extremely high doping density between 10^18-10^21 cm-3. Such values are obtained from Mott-Schottky plots by assuming that the measured capacitance is dominated by the capacitance of the depletion layer formed by the doping density within the photoanode. In this work, we show that such an assumption is erroneous in many cases because the injection of electrons from the collecting contact creates a ubiquitous capacitance step that is very difficult to distinguish from that of the depletion layer. Based on this reasoning, we derive an analytical resolution limit that is independent of the assumed active area and surface roughness of the photoanode, below which doping densities cannot be measured in a capacitance measurement. We find that the reported doping densities in literature lie very close to this value and therefore conclude that there is no credible evidence from capacitance measurements that confirms that bismuth vanadate and haematite photoanodes contain high doping densities.
000908477 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000908477 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908477 7001_ $$00000-0003-4987-4887$$aBisquert, Juan$$b1
000908477 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b2
000908477 773__ $$0PERI:(DE-600)2559110-1$$a10.1039/D1SC06401K$$gVol. 13, no. 17, p. 4828 - 4837$$n17$$p4828 - 4837$$tChemical science$$v13$$x2041-6520$$y2022
000908477 8564_ $$uhttps://juser.fz-juelich.de/record/908477/files/22%2003%2014%20PEC%20Mott-Schottky%20paper%2BSI.pdf$$yOpenAccess
000908477 8564_ $$uhttps://juser.fz-juelich.de/record/908477/files/d1sc06401k-1.pdf$$yOpenAccess
000908477 909CO $$ooai:juser.fz-juelich.de:908477$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000908477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180551$$aForschungszentrum Jülich$$b0$$kFZJ
000908477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b2$$kFZJ
000908477 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000908477 9141_ $$y2022
000908477 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000908477 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000908477 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-01-29
000908477 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 3.0
000908477 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908477 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-29
000908477 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-22$$wger
000908477 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM SCI : 2021$$d2022-11-22
000908477 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-22
000908477 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-22
000908477 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-22
000908477 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-22
000908477 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-22
000908477 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-12-17T14:34:32Z
000908477 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-12-17T14:34:32Z
000908477 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-12-17T14:34:32Z
000908477 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM SCI : 2021$$d2022-11-22
000908477 920__ $$lno
000908477 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000908477 9801_ $$aFullTexts
000908477 980__ $$ajournal
000908477 980__ $$aVDB
000908477 980__ $$aUNRESTRICTED
000908477 980__ $$aI:(DE-Juel1)IEK-5-20101013
000908477 981__ $$aI:(DE-Juel1)IMD-3-20101013