Hauptseite > Publikationsdatenbank > Interpretation of Mott–Schottky plots of photoanodes for water splitting > print |
001 | 908477 | ||
005 | 20240712084518.0 | ||
024 | 7 | _ | |a 10.1039/D1SC06401K |2 doi |
024 | 7 | _ | |a 2041-6520 |2 ISSN |
024 | 7 | _ | |a 2041-6539 |2 ISSN |
024 | 7 | _ | |a 2128/32050 |2 Handle |
024 | 7 | _ | |a 35655867 |2 pmid |
024 | 7 | _ | |a WOS:000781235700001 |2 WOS |
037 | _ | _ | |a FZJ-2022-02630 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Ravishankar, Sandheep |0 P:(DE-Juel1)180551 |b 0 |e Corresponding author |
245 | _ | _ | |a Interpretation of Mott–Schottky plots of photoanodes for water splitting |
260 | _ | _ | |a Cambridge |c 2022 |b RSC |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1666072254_30573 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A large body of literature reports that both bismuth vanadate and haematite photoanodes are semiconductors with an extremely high doping density between 10^18-10^21 cm-3. Such values are obtained from Mott-Schottky plots by assuming that the measured capacitance is dominated by the capacitance of the depletion layer formed by the doping density within the photoanode. In this work, we show that such an assumption is erroneous in many cases because the injection of electrons from the collecting contact creates a ubiquitous capacitance step that is very difficult to distinguish from that of the depletion layer. Based on this reasoning, we derive an analytical resolution limit that is independent of the assumed active area and surface roughness of the photoanode, below which doping densities cannot be measured in a capacitance measurement. We find that the reported doping densities in literature lie very close to this value and therefore conclude that there is no credible evidence from capacitance measurements that confirms that bismuth vanadate and haematite photoanodes contain high doping densities. |
536 | _ | _ | |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121) |0 G:(DE-HGF)POF4-1215 |c POF4-121 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Bisquert, Juan |0 0000-0003-4987-4887 |b 1 |
700 | 1 | _ | |a Kirchartz, Thomas |0 P:(DE-Juel1)159457 |b 2 |
773 | _ | _ | |a 10.1039/D1SC06401K |g Vol. 13, no. 17, p. 4828 - 4837 |0 PERI:(DE-600)2559110-1 |n 17 |p 4828 - 4837 |t Chemical science |v 13 |y 2022 |x 2041-6520 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/908477/files/22%2003%2014%20PEC%20Mott-Schottky%20paper%2BSI.pdf |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/908477/files/d1sc06401k-1.pdf |
909 | C | O | |o oai:juser.fz-juelich.de:908477 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)180551 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)159457 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1215 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2021-01-29 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 3.0 |0 LIC:(DE-HGF)CCBYNC3 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2021-01-29 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2022-11-22 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEM SCI : 2021 |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-12-17T14:34:32Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-12-17T14:34:32Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2020-12-17T14:34:32Z |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CHEM SCI : 2021 |d 2022-11-22 |
920 | _ | _ | |l no |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-5-20101013 |k IEK-5 |l Photovoltaik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-5-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-3-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|