Transport and magnetic properties of the topological (Weyl) semimetal: Hexagonal - $(Mn_{1-\alpha}Fe_{\alpha})_3$ Ge ($\alpha = 0$ -0.3)

Venus Rai^{1,*}, Shibabrata Nandi¹, Anne Stunault², Wolfgang Schmidt³, Subhadip Jana¹, Jian-Rui Soh⁴, Jörg Perßon¹, Thomas Brückel¹

²Institut Laue-Langevin, 71 avenue des Martyrs, CS20156, 38042 Grenoble Cedex 9, France

³Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at ILL, 71 Avenue des Martyrs, 38042 Grenoble, France

⁴Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Introduction:

Weyl semimetals host Weyl fermions, which act as a source and sink to the non-zero Berry curvature, giving rise to the fictitious magnetic field in phase space.

Large anomalous Hall effect can be observed in chiral *antiferromagnetic* Weyl systems. **Best example:** Hex.-Mn₃Ge.

Magnetic and transport properties of Fedoped Mn_3 Ge were studied to examine the evolution of Weyl parameters ($\Delta k, \mu$) with: (i) magnetization (ii) magnetic symmetry, and (iii) impurity.

Sample characterization:

- Single crystal (sc) Hex- $(Mn_{1-\alpha}Fe_{\alpha})_3Ge$ (α = 0-0.22) were synthesized.
- X-ray powder diffraction analysis confirms the pure hexagonal phase $(P6_3/mmc)$ for all the compounds.
- Magnetization and resistivity measurements show magnetic phase tansitions at 240 K ($T_{\rm N1}$) and 110 K ($T_{\rm N2}$).

Resistivity and anomalous Hall effect (AHE):

- Anomalous Hall resistivity $(\rho_{\chi Z}^A)$ is observed in AF-I regime.
- Anomalous Hall conductivity (AHC): $\sigma_{\chi z}^A = \rho_{\chi z}^A/(\rho_{\chi \chi}\rho_{zz})$.
- AHE is present within AF-I regime only. 200
 - Origin of AHE in AFM? Nonzero Berry curvature.
 - Weyl points are likely to exist within the entire AF-I region.

Angular magneto-conductivity (&MC):

- Positive ϑ MC is observed within the AF-I regime only (below T_{N1} , and above T_{N2}).
- Fitting: $\sigma_{\chi\chi}(B) \sigma_{\chi\chi}(0) = \Delta\sigma_{\chi\chi}\cos^2\theta$; $[\Delta\sigma_{\chi\chi} = \sigma_{\chi\chi}(0^{\circ}) \sigma_{\chi\chi}(90^{\circ})]$.

- AF-I region: Positive ϑ MC is small compared to the Mn₃Ge.
 - AF-II region: Positive ϑMC vanishes.
- Origin of positive ϑMC in AF-I region? (possibly) chiral anomaly effect.
- Why $\Delta \sigma_{xx}$ decreases with an increase in α ? Weyl points move far from $E_{\rm F}$

Single-crystal neutron diffraction (@ ILL):

• Polarized neutron (CRYOPAD, D3), Unpolarized neutron (D23) diffraction techniques were used to determine the magnetic structure (mag. srt.) of the $(Mn_{(0.78)}Fe_{0.22})_3Ge$.

- AF-I region: mag. Str. remains same as Mn₃Ge (in-plane AFM).
- AF-II region: mag. str. become collinear AFM along the z axis.

Conclusion:

AHE and ϑ MC are present in AF-I regime only, where mag. str. is same as Mn₃Ge.

- Weyl points are robust, and most likely exist in $(Mn_{1-\alpha}Fe_{\alpha})_3Ge$ ($\alpha = 0-0.22$).
- Magnetic symmetry and Weyl points are intimately connected.

AHE and ϑ MC, in the AF-I regime, weaken significantly.

• Δk decreases, and μ increases with Fe doping. So, Weyl parameters $(\Delta k, \mu)$ can be tuned by doping of the parent Weyl semimetal.

*email: v.rai@fz-juelich.de