Transport and magnetic properties of the topological (Weyl) semimetal: Hexagonal - $(Mn_{1-\alpha}Fe_{\alpha})_3$ Ge ($\alpha = 0$ -0.3) **Venus Rai^{1,*}**, Shibabrata Nandi¹, Anne Stunault², Wolfgang Schmidt³, Subhadip Jana¹, Jian-Rui Soh⁴, Jörg Perßon¹, Thomas Brückel¹ ²Institut Laue-Langevin, 71 avenue des Martyrs, CS20156, 38042 Grenoble Cedex 9, France ³Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at ILL, 71 Avenue des Martyrs, 38042 Grenoble, France ⁴Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland ## Introduction: Weyl semimetals host Weyl fermions, which act as a source and sink to the non-zero Berry curvature, giving rise to the fictitious magnetic field in phase space. Large anomalous Hall effect can be observed in chiral *antiferromagnetic* Weyl systems. **Best example:** Hex.-Mn₃Ge. Magnetic and transport properties of Fedoped Mn_3 Ge were studied to examine the evolution of Weyl parameters ($\Delta k, \mu$) with: (i) magnetization (ii) magnetic symmetry, and (iii) impurity. ## Sample characterization: - Single crystal (sc) Hex- $(Mn_{1-\alpha}Fe_{\alpha})_3Ge$ (α = 0-0.22) were synthesized. - X-ray powder diffraction analysis confirms the pure hexagonal phase $(P6_3/mmc)$ for all the compounds. - Magnetization and resistivity measurements show magnetic phase tansitions at 240 K ($T_{\rm N1}$) and 110 K ($T_{\rm N2}$). # Resistivity and anomalous Hall effect (AHE): - Anomalous Hall resistivity $(\rho_{\chi Z}^A)$ is observed in AF-I regime. - Anomalous Hall conductivity (AHC): $\sigma_{\chi z}^A = \rho_{\chi z}^A/(\rho_{\chi \chi}\rho_{zz})$. - AHE is present within AF-I regime only. 200 - Origin of AHE in AFM? Nonzero Berry curvature. - Weyl points are likely to exist within the entire AF-I region. ## Angular magneto-conductivity (&MC): - Positive ϑ MC is observed within the AF-I regime only (below T_{N1} , and above T_{N2}). - Fitting: $\sigma_{\chi\chi}(B) \sigma_{\chi\chi}(0) = \Delta\sigma_{\chi\chi}\cos^2\theta$; $[\Delta\sigma_{\chi\chi} = \sigma_{\chi\chi}(0^{\circ}) \sigma_{\chi\chi}(90^{\circ})]$. - AF-I region: Positive ϑ MC is small compared to the Mn₃Ge. - AF-II region: Positive ϑMC vanishes. - Origin of positive ϑMC in AF-I region? (possibly) chiral anomaly effect. - Why $\Delta \sigma_{xx}$ decreases with an increase in α ? Weyl points move far from $E_{\rm F}$ ## Single-crystal neutron diffraction (@ ILL): • Polarized neutron (CRYOPAD, D3), Unpolarized neutron (D23) diffraction techniques were used to determine the magnetic structure (mag. srt.) of the $(Mn_{(0.78)}Fe_{0.22})_3Ge$. - AF-I region: mag. Str. remains same as Mn₃Ge (in-plane AFM). - AF-II region: mag. str. become collinear AFM along the z axis. #### Conclusion: AHE and ϑ MC are present in AF-I regime only, where mag. str. is same as Mn₃Ge. - Weyl points are robust, and most likely exist in $(Mn_{1-\alpha}Fe_{\alpha})_3Ge$ ($\alpha = 0-0.22$). - Magnetic symmetry and Weyl points are intimately connected. AHE and ϑ MC, in the AF-I regime, weaken significantly. • Δk decreases, and μ increases with Fe doping. So, Weyl parameters $(\Delta k, \mu)$ can be tuned by doping of the parent Weyl semimetal. *email: v.rai@fz-juelich.de