000908493 001__ 908493
000908493 005__ 20220721190603.0
000908493 0247_ $$2Handle$$a2128/31469
000908493 037__ $$aFZJ-2022-02636
000908493 041__ $$aEnglish
000908493 1001_ $$0P:(DE-Juel1)177823$$aMore, Shammi$$b0$$eCorresponding author
000908493 1112_ $$aOrganization for Human Brain Mapping$$cGlasgow$$d2022-06-19 - 2022-06-23$$wScotland
000908493 245__ $$aBrain-age prediction: a systematic comparison of machine learning workflows
000908493 260__ $$c2022
000908493 3367_ $$033$$2EndNote$$aConference Paper
000908493 3367_ $$2BibTeX$$aINPROCEEDINGS
000908493 3367_ $$2DRIVER$$aconferenceObject
000908493 3367_ $$2ORCID$$aCONFERENCE_POSTER
000908493 3367_ $$2DataCite$$aOutput Types/Conference Poster
000908493 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1658381484_19130$$xAfter Call
000908493 520__ $$aPrediction of age using anatomical brain MRI, i.e., brain age, is proving valuable in exploring accelerated aging (brain age delta) as a proxy for aging-related diseases and crucial future health outcomes [1]. While various data representations and machine learning (ML) algorithms have been used for brain-age prediction [2,3], the impact of these choices on prediction accuracy remains uncharacterized. Moreover, several methodological challenges remain before a predictive model can be deployed in the real world; (1) robust within-site performance, (2) accurate cross-site prediction and, (3) consistent prediction for the same individual. To fill this gap, we systematically evaluated 70 workflows consisting of ten feature spaces derived from grey matter (GM) images and seven ML algorithms with diverse inductive biases to establish guidelines for designing brain-age prediction workflows.
000908493 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000908493 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x1
000908493 7001_ $$0P:(DE-HGF)0$$aAntonoupolous, Georgios$$b1
000908493 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b2
000908493 7001_ $$0P:(DE-Juel1)144344$$aCaspers, Julian$$b3
000908493 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b4
000908493 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh$$b5
000908493 8564_ $$uhttps://juser.fz-juelich.de/record/908493/files/OHBM_poster_WTH039.pdf$$yOpenAccess
000908493 909CO $$ooai:juser.fz-juelich.de:908493$$popenaire$$popen_access$$pVDB$$pdriver
000908493 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177823$$aForschungszentrum Jülich$$b0$$kFZJ
000908493 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)177823$$a HHU Düsseldorf$$b0
000908493 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000908493 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a HHU Düsseldorf$$b1
000908493 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b2$$kFZJ
000908493 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131684$$a HHU Düsseldorf$$b2
000908493 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)144344$$a University Hospital Düsseldorf $$b3
000908493 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b4$$kFZJ
000908493 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b4
000908493 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b5$$kFZJ
000908493 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172843$$a HHU Düsseldorf$$b5
000908493 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000908493 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
000908493 9141_ $$y2022
000908493 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908493 920__ $$lyes
000908493 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000908493 980__ $$aposter
000908493 980__ $$aVDB
000908493 980__ $$aUNRESTRICTED
000908493 980__ $$aI:(DE-Juel1)INM-7-20090406
000908493 9801_ $$aFullTexts