001     908493
005     20220721190603.0
024 7 _ |a 2128/31469
|2 Handle
037 _ _ |a FZJ-2022-02636
041 _ _ |a English
100 1 _ |a More, Shammi
|0 P:(DE-Juel1)177823
|b 0
|e Corresponding author
111 2 _ |a Organization for Human Brain Mapping
|c Glasgow
|d 2022-06-19 - 2022-06-23
|w Scotland
245 _ _ |a Brain-age prediction: a systematic comparison of machine learning workflows
260 _ _ |c 2022
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1658381484_19130
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Prediction of age using anatomical brain MRI, i.e., brain age, is proving valuable in exploring accelerated aging (brain age delta) as a proxy for aging-related diseases and crucial future health outcomes [1]. While various data representations and machine learning (ML) algorithms have been used for brain-age prediction [2,3], the impact of these choices on prediction accuracy remains uncharacterized. Moreover, several methodological challenges remain before a predictive model can be deployed in the real world; (1) robust within-site performance, (2) accurate cross-site prediction and, (3) consistent prediction for the same individual. To fill this gap, we systematically evaluated 70 workflows consisting of ten feature spaces derived from grey matter (GM) images and seven ML algorithms with diverse inductive biases to establish guidelines for designing brain-age prediction workflows.
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 1
700 1 _ |a Antonoupolous, Georgios
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 2
700 1 _ |a Caspers, Julian
|0 P:(DE-Juel1)144344
|b 3
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 4
700 1 _ |a Patil, Kaustubh
|0 P:(DE-Juel1)172843
|b 5
856 4 _ |u https://juser.fz-juelich.de/record/908493/files/OHBM_poster_WTH039.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:908493
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)177823
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)177823
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131684
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)131684
910 1 _ |a University Hospital Düsseldorf
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)144344
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172843
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-Juel1)172843
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 1
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21