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a. Within-site Performance Figure 1. The framework to select the best workflow for brain-age prediction.128 workflows were
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Results
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Figure 3. a. Scatter plot . : : : _
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predicted age b. Averaged CCC =0.97

Figure 2. a. Scatter plot
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0 20 40 60 80 100 120 0 2 4 6 8 10 12 14 16 Figure 4: Brain-age delta from two time points of the same subjects
Combination of Features and ML models Combination of Features and ML models with a retest duration of less than 3 months.
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