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Brain-age prediction: a systematic comparison of 
machine learning workflows

MethodsIntroduction

• Estimate a person’s age based on
Magnetic resonance imaging (MRI)
data

• Brain-age delta =
Predicted age – True age

• Higher brain-age delta reflects
poorer brain health1,2.

• Impact of feature representations
and machine learning (ML)
algorithms is not known.

• Aim: Systematically evaluate 128
workflows by assessing:

a. Within-site Performance
b. Cross-site Performance
c. Test-retest Reliability

Results

Conclusions

• Effect of both feature representations and
machine learning algorithms

• Voxel-wise data is better than parcel-
wise data.

• Brain-age delta is reliable over a short
duration of scan interval.

• Mean brain-age delta is higher in MCI
and AD patients compared to CN, which
is associated with higher cognitive
impairment.
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a.

Figure 2. a. Scatter plot
between true age and
predicted age for CamCAN
data. b. Averaged CV MAE
arranged in the increasing
order with arrows pointing to
selected workflows.

Figure 4: Brain-age delta from two time points of the same subjects
with a retest duration of less than 3 months.

d. Application in Dementia

Figure 1. The framework to select the best workflow for brain-age prediction.128 workflows were
first evaluated for their single-site prediction performance. Next, 16 workflows were selected based
upon Cross-validation (CV) mean absolute error (MAE) and assessed for cross-site prediction
performance. Then, four workflows were selected based on their test MAE and were assessed for
test-retest reliability. The one best performing workflow was then selected.

Test MAE: 5.4 to 8.6 years
Best workflow: S4_R4 + GPR

Figure 3. a. Scatter plot
between true age and
predicted age b. Averaged
test MAE arranged in the
increasing order with
arrows pointing to selected
workflows.

Average CV MAE from four sites

16 selected workflows 4 selected workflows

Average Test MAE from four sites

a. Within site evaluation b. Cross-site evaluation c. Test-retest reliability

Data: T1-weighted images from healthy subjects with a wide age
range (18-90 years); Training: CamCAN, IXI, eNKI and,
1000brains3-6 Testing: CoRR, OASIS-3, and ADNI7-9

Input features: Modulated grey matter images from Voxel-Based
Morphometry10 using CAT12.8 toolbox11
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• Four selected workflows trained using four
datasets combined as training data

• CoRR dataset with two MRI scans per subject
less than three months apart

• Test-retest reliability: 
Concordance Correlation Coefficient (CCC)12

• Best workflow: S4_R4 + GPR

• Brain-age estimations were stable:
CCC = 0.97

N = 153 N = 197 N = 104 N = 61

** • Significantly higher delta in
AD compared to CN, EMCI,
and LMCI; and in LMCI
compared to CN

• Negative correlation between
MMSE and delta in AD and
LMCI

**
* *

b.

CV MAE: 4.9 to 8.5 years
Best workflow: S4_R4 + GPR           Feature space: 

Voxel-wise data 
smoothed with 4 
mm FWHM and 
resampled to 4 mm 

Model: Gaussian 
Process 
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Figure 5. a. Comparison of brain-age delta
between cognitive normal (CN), early mild
cognitive impairment (EMCI), late mild
cognitive impairment (LMCI), & Alzheimer’s
Disease (AD). b. The scatter plot shows the
correlation between corrected brain-age delta
and Mini-Mental State Examination (MMSE).
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