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Abstract

We present and discuss a new dataset of gridded emissions covering the historical pe-
riod (1850—-2000) in decadal increments at a horizontal resolution of 0.5° in latitude and
longitude. The primary purpose of this inventory is to provide consistent gridded emis-
sions of reactive gases and aerosols for use in chemistry model simulations needed by
climate models for the Climate Model Intercomparison Program #5 (CMIP5) in support
of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report
(AR5). Our best estimate for the year 2000 inventory represents a combination of ex-
isting regional and global inventories to capture the best information available at this
point; 40 regions and 12 sectors are used to combine the various sources. The his-
torical reconstruction of each emitted compound, for each region and sector, is then
forced to agree with our 2000 estimate, ensuring continuity between past and 2000
emissions. Simulations from two chemistry-climate models is used to test the ability
of the emission dataset described here to capture long-term changes in atmospheric
ozone, carbon monoxide and aerosol distributions. The simulated long-term change in
the Northern mid-latitudes surface and mid-troposphere ozone is not quite as rapid as
observed. However, stations outside this latitude band show much better agreement
in both present-day and long-term trend. The model simulations indicate that the con-
centration of carbon monoxide is underestimated at the Mace Head station; however,
the long-term trend over the limited observational period seems to be reasonably well
captured. The simulated sulfate and black carbon deposition over Greenland is in very
good agreement with the ice-core observations spanning the simulation period. Fi-
nally, aerosol optical depth and additional aerosol diagnostics are shown to be in good
agreement with previously published estimates and observations.
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1 Introduction

In order to perform climate simulations over the historical record, it is necessary to pro-
vide climate models with information on the evolution of radiatively active gases and
aerosols. Climate models that will contribute to scenario analysis for IPCC AR5 report
(Intergovernmental Panel on Climate Change; Fifth Assessment Report) usually start
their model calculations in pre-industrial times, specified in this case as being 1850
(Taylor et al., 2008). In order to enable such simulations, knowledge of the evolution
of both historic emissions and concentrations of air pollutions is required. Examples
of gridded emissions can be found at the GEIA/ACCENT emissions portal (available
at: http://geiacenter.org). The determination of these emissions require a variety of
steps involving the knowledge of the source of emission (e.g. amount of fossil fuel
combusted by power plants), an emission factor (e.g. how much of a given chemical
species is emitted for a specific mass of a given fuel burned in a specific technolog-
ical process accounting for the operation of abatement measures) and a procedure
for mapping onto a geographical grid (e.g. the location point sources such as power
plants). As discussed in Klimont and Streets (2007) the quality of available emission
inventories varies, between high quality inventories for point sources in Europe or North
America (e.g. SO, from power plants which is based on emissions monitoring) and in-
ventories that are less reliable, especially in developing or industrializing countries due
to incompleteness of activity data or lack of test-based emission factors. The resulting
uncertainty leads to a range of possible emissions for a given process and base year
that varies strongly between regions, sectors, and pollutants (e.g. Streets et al., 2006;
Klimont and Streets, 2007). These uncertainties lead to a range of possible emission
outcomes for a given source. While this issue applies to all types of emissions, we
will focus in this paper on anthropogenic (defined here as originating from energy use
in stationary and mobile sources, industrial processes, domestic and agricultural ac-
tivities) and open biomass burning emissions. And our overall approach to building
this new emission dataset is to combine a variety of data sources to maximize the
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information content; this is done through a combination of (1) regional and global in-
ventories in order to define year 2000 emissions (2) long-term global emission datasets
to define historical changes in emissions.

In order to perform chemistry simulations with enough resolution to resolve regional
structures and their changes, our target is to provide monthly emissions at a hori-
zontal resolution of 0.5° in latitude and longitude every 10 years. All emissions nec-
essary for the simulation of tropospheric ozone and aerosols are provided, including
methane (CH,), carbon monoxide (CO), nitrogen oxides (NO,), total and speciated
non-methane volatile organic compounds (NMVOCs), ammonia (NHj3), organic car-
bon (OC), black carbon (BC) and sulfur dioxide (SO,). Compounds relevant for other
issues (e.g. CFCs, HCFCs and HFCs, mercury, persistent organic pollutants) have
not been included in this inventory as they were not necessary for the stated goal of
providing climate models distributions of tropospheric ozone and aerosols for radiative
forcing. The emission data are provided at the start of each decade. While interan-
nual changes may be important for the detailed analysis of past “rapid” (i.e. less than
a few years) pollution changes, we decided that decadal data are overall better suited
to fulfill the needs of AR5 for the following reasons: (1) annual data sets exist only for
a limited set of species (Smith et al., 2004) or only for the recent past — for example
RETRO, available for the 1960—2000 period (Schultz et al., 2007, 2008) and REAS,
which covers the 1980-2003 (Ohara et al., 2007; Smith et al., 2004), (2) emissions be-
come increasingly uncertain going back in time, limiting the usefulness of single year
data and (3) future emissions generated by Integrated Assessment Models (IAMs) are
usually available with time steps on the order of 10 years (van Vuuren et al., 2010).
Finally, while seasonal variations in anthropogenic emissions could also be of impor-
tance, (1) no enough information of past emissions available and (2) expected to be of
lesser relevance compared to the long-term trends.

The paper is organized as follows: in Sect. 2, we discuss the land-based anthro-
pogenic emissions, defined here as originating from industrial, domestic and agricul-
ture activity sectors. Section 3 described the biomass burning emissions. In Sect. 4,
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we present our reconstruction of ship and aircraft emissions. Application of these emis-
sions in chemistry-climate models and the analysis of the modeled concentrations of
ozone carbon monoxide and aerosols are discussed in Sect. 5. Finally, discussion and
conclusions are in Sect. 6.

1.1 Land-based anthropogenic emissions

In the case of land-based anthropogenic emissions (i.e., excluding aircraft and ship
emissions), two available datasets on historical emissions, RETRO (1960—2000;
Schultz et al.,, 2007) and EDGAR-HYDE (1890-1990; van Aardenne et al., 2001),
provide information on emission changes over the second half of the 20th century for
a limited set of compounds (Table 1), or at least. As mentioned in the Introduction, our
approach consists of generating first our best estimate for 2000, based on the combi-
nation of global and regional datasets. This aggregation is performed using a set of
40 regions (Table 2) and 12 sectors (Table 3). Then, using a combination of RETRO
and EDGAR-HYDE, historical trends for each sector in each region are generated. Fi-
nally, the historical emissions of reactive gases (ozone precursors only) are computed
using the historical trends applied to our 2000 emissions. We discuss those three steps
in this section.

While several recent assessments have shown that regional emissions have expe-
rienced significant changes between 2000 and present, especially in Southeast Asia
(e.g., Richter et al., 2005; Zhang et al., 2009; Klimont et al., 2009), the lack of com-
parably comprehensive studies for this period in other regions made it impossible to
provide detailed calculations that covered the entire globe; and therefore the year 2000
was used as the reference.

1.2 Definition of year 2000 emission

Anthropogenic emissions of reactive gases (with the exclusion of SO,, see below) in
2000 are defined in terms of a variety of global and regional inventories. In generating
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our emission dataset, published or reviewed regional inventories have been given pref-
erence over global inventories in case these were available. This was the case for
the EMEP (2006) inventory for Europe, the REAS inventory for Asia and the EPA in-
ventory for North America. In those regions we assume that these inventories more
appropriately reflect regional circumstances than the global inventories. Furthermore,
the inventories for North America and European countries within the EMEP domain
have been extensively evaluated through model and observation studies and inven-
tories reported as Annex | inventories to the United Nations Framework Convention
on Climate Change (UNFCCC) are subject to expert review. The EDGARv32 FT2000
dataset (Van Aardenne et al., 2005; Olivier et al., 2005) and preliminary emissions
from EDGAR v4.0 for agriculture (EC-JRC/PBL, 2009) are used where regional infor-
mation is not available. As the various inventories are combined at the level of regional
averages, no attempt is made at smoothing potential discontinuities across regional
boundaries. Although additional information is available in the literature for several re-
gions (e.g., Zhang et al., 2009; Streets et al., 2003, 2006; Klimont et al., 2009; Cofala
et al., 2007; NARSTO, 2006; Garg et al., 2006), we did not attempt to include those as
they were less complete than the inventories applied in this study (e.g. only covering
1 country or including limited sectoral information or did not extend to the year 2000)
or were already integrated into the datasets we have used (e.g., for East Asia REAS
includes results of several specific inventories). While some of these inventories might
provide better insight in emissions for one specific sector or compound for individual
countries, it goes beyond the scope and available resources of the global inventory
presented here to evaluate them on an individual basis and include them in a system-
atic way into the global inventory. Such approach might provide additional datasets in
the future that can be used to improve upon this work.

Emissions of black carbon (BC) and organic carbon (OC) included in the dataset pre-
sented here represent an update of Bond et al. (2007) and Junker and Liousse (2008)
as harmonization of emission factors was performed for the year 2000 from these pa-
pers and the studies they reference. Emissions of sulfur dioxide (Smith et al., 2010;
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S. J. Smith, J. van Aardenne, Z. Klimont, R. Andres, A. Volke and S. Delgado Arias
“Historical Sulfur Dioxide Emissions: 1850-2005”, 2010) are an update of Smith et
al. (2001, 2004), with emissions from the UNFCCC submissions and other regional
inventories where available.

For all species, gridding is performed using the EDGAR v4.0 spatial distribution
maps specific for each sector at a 0.1° resolution, and aggregated to a 0.5° grid (EC-
JRC/PBL, 2009). The 2000 SO, map used additional data from EDGARFT for smelting
and fuel processing emissions.

1.3 Historical reconstruction

As we have two distinct emission datasets for ozone precursors (RETRO and EDGAR-
HYDE) with differing trends and there is no a priori reason to dismiss one inventory
over the other, we have devised an approach that maximizes the information from both
datasets where applicable. Using the RETRO and EDGAR-HYDE historical trends per
region and per sector, we generate historical trends for each sector in each region
by defining the ratio of the emissions at a specific decade to its value in 2000 (our
reference data set). This ratio is a concise representation of the changes in fuel use
and emission factor over time and its full history (1850—-2000) can be used to scale
our 2000 inventory to define emissions in previous decades. The scaling of the an-
thropogenic emissions for reactive gases (excluding SO,) using EDGAR-HYDE and
RETRO relies on the assumption that each reconstruction provides a reasonable (al-
beit sometimes different) representation of the time evolution of emissions; this can
clearly only be applied to species available in both emission datasets, i.e. CO, NO, and
NMVOCs. The main differences between the RETRO and EDGAR-HYDE datasets are
in the emission factors variations over time (with RETRO having more technology in-
formation) and, to a lesser extent, the completeness of the inventory (e.g. no industrial
process emissions in RETRO). Therefore, emissions for decades prior to 2000 can be
calculated through a direct scaling (per sector and region) of our 2000 emissions, with
a weighting factor defined as a linear combination of the RETRO and EDGAR-HYDE
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scaling factors, increasingly favoring EDGAR-HYDE when going further back in time
(as RETRO is only available until 1960). To provide emissions back to 1850, EDGAR-
HYDE emissions (which cover 1890 to 1990) are extrapolated to 1850 using global
fossil fuel consumption estimates from Andres et al. (1999) and regional scale data for
population from the HYDE dataset (Goldewijk, 2005).

In summary, the scaling for each sector and region is computed using the following
steps:

1. The 1990-2000 change is computed in RETRO only (since the year 2000 is not
included in EDGAR-HYDE).

2. The decadal changes between 1960 and 1990 are a combination of RETRO and
EDGAR-HYDE.

3. The decadal changes between 1890 and 1960 are computed from EDGAR-HYDE
only (no RETRO estimates prior to 1960).

4. The emissions between 1850 and 1890 are exactly as computed from EDGAR-
HYDE and its extrapolation.

5. Smoothing is applied to scaling factors across 1960 and 1990 to limit jumps in the
scaling factor.

The advantage of using a scaling approach is that it only requires that the existing
emission inventories provide a time history of the specific emission, without having to
deal with emission biases between inventories. Clearly, such history is meaningful only
within a particular sector and for a specific region as pollution controls vary; the scaling
is therefore capturing the change in fuel amount (usually fairly well-constrained) and
change in the emission factors. It also relies on the assumption of an unbiased 2000
estimate; however, if such a bias were to be present, the methodology presented here
could be applied to an updated set of 2000 estimates.
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The results from this scaling process are illustrated in Fig. 1 (left panel) for the case
of CO emissions from the transportation sector in the United States. In this case, the
RETRO inventory (red line) indicates a peak in 1970, followed by a rapid decline until
2000; on the other hand, EDGAR-HYDE (green line) does not peak in 1970 but in-
stead is still larger in 1980. Therefore, the combination (black line) leads to a scaling
which, going back in time, does not quite reach the RETRO levels in 1970 but instead
reaches a smaller maximum in 1980. It represents therefore a combination of the two
inventories. In terms of CO emission amount for this specific sector and region (Fig. 1,
right panel), the combined use of the 2000 emissions with the scaling factor time evo-
lution (Fig. 1, left panel) provides a new evolution of emissions with time that captures
the changes and amplitudes of each original inventory; because of the different 2000
emissions for this sector and region, the combined dataset lies in-between the original
sets.

While there can be wide variations for a specific sector or region, the global total
amounts of anthropogenic emissions for each compound are actually quite similar to
either RETRO or EDGAR-HYDE (Fig. 2), except in the case of agricultural waste burn-
ing and NMVOCs. The largest difference (in absolute amounts) is an increase in CO
emissions compared to the EDGAR-HYDE estimate. Emissions of nitrogen oxides are
quite similar between the two original inventories; in particular, the emissions between
1960 and 1980 are almost identical in RETRO and EDGAR-HYDE. Our combined
dataset ends up slightly higher over that time period because our 2000 NO, emission
estimate is larger than in RETRO. On the other hand, our 2000 NMVOC emissions are
smaller than either RETRO or EDGAR-HYDE, again with a peak in 1990, similar to
RETRO.

For OC and BC, two historical inventories were available; Bond et al. (2007) and
Junker and Liousse (2008). In our study the historical trend of Bond et al. (2007)
was used, constrained by our combined 2000 estimate. In addition, agricultural waste
burning was computed from the CO estimate (see above) using regional emission fac-
tor (OC/CO and BC/CO) based on our 2000 emission estimates. For NH; we use the
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reconstruction by Beusen et al. (2008) while for CH,, since only one historical inventory
(EDGAR-HYDE) exists, the only constraint to the present emission dataset comes from
our 2000 estimate. The SO, time evolution was consistently calculated from Smith et
al. (2010). These are shown in Fig. 3.

Soil emissions of nitrogen oxides are clearly affected by the use of fertilizers; it is
therefore very difficult to disentangle the natural and anthropogenically-perturbed com-
ponents to this flux. We have therefore used the EDGAR-HYDE estimate of soil NO,
emissions prior to 1950 (i.e. before strong growth in man-made fertilizer use; Erisman
et al., 2009) as the natural component. The 2000 anthropogenic portion (included in
the agricultural sector, see Table 2) is estimated from EDGAR-v4, while the time evo-
lution is based on Yan et al. (2005).

In all cases, gridding of the emissions for the 1850—-2000 period relies on a weighted
mean of the distributions obtained using either population (from the HYDE dataset)
or the year 2000 gridded emissions. It is applied so that the weighting associated
with the 2000 gridded distributions decreases when going back in time, with emissions
after 1980 using the same grid as 2000; this is based on the assumption that, within a
region, heavy infrastructure (such as power plants) has a very long (decades) lifespan.
Although this approach might lead in few specific areas to shifts in source allocation,
e.g., collapse of several economies in Eastern Europe in the 1990s “removed from
the map” several industrial sources, we believe this has only limited impact on the
simulations intended using these historical sets of data.

No vertical emission profile is provided; however, the availability of sectoral emis-
sions (energy, industry, domestic, etc.) in our emission files allows consistent assump-
tions about stack height to be applied if desired.

Speciation of NMVOC emissions is performed using the RETRO inventory. In this
case, regional information for the split of the total NMVOC emitted into a set of specific
hydrocarbons (Table 4) is available for the year 2000. Because of the lack of additional
information, the same ratio (specific hydrocarbon to total NMVOCs at each grid point)
is kept constant for the whole historical period.
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2 Biomass burning emissions

Only a few inventories provide biomass burning emissions for the past decades (lto
and Penner, 2005; Schuliz et al., 2008; Mieville et al., 2010). In this paper, we focus on
the following: (1) the RETRO inventory (Schultz et al., 2008) provides emissions from
wildfires for each year during the 1960-2000 period, on a monthly basis; (2) the GICC
inventory (Mieville et al., 2010) gives emissions from open biomass burning for the
20th century (1900-2000) on a decadal basis based on Mouillot et al. (2005) (3) the
GFEDv2 inventory (van der Werf et al., 2006) covers emissions for the 1997-2006
period.

For our study, we have established a best guess estimate of historic biomass burning
emissions from a combination of these three datasets: The GICC inventory is used
as input data for the construction of the 1900-1950 dataset, the RETRO inventory
for the 1960-1990 dataset and the GFEDv2 inventory for the 2000 estimate. The
GFEDv2 inventory was favored over the 2000 estimate from RETRO because it is
one of the most state-of-the art global biomass burning dataset currently available that
incorporates satellite-based burned area estimates and seasonality.

Given the substantial interannual variability of biomass burning on a global and re-
gional scale (e.g., Duncan et al., 2003; Schultz et al., 2008), it is problematic to use
a shapshot dataset from an individual year for the development of a dataset that is
considered to be representative for a decade. We therefore decided to construct his-
toric gridded biomass burning emissions from decadal means (years 0 to 9 of a given
decade), except for the 2000 estimate which is calculated from the 1997-2006 average.

In order to enforce consistency of biomass burning emissions over the entire period,
carbon emission fluxes from the three datasets are first harmonized, taking the 2000
estimate from GFEDv2; emissions of trace gases and aerosols are then re-calculated
from the gridded carbon emission fluxes provided in the three datasets by applying
a single set of vegetation-type specific emission factors. The vegetation cover map
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is derived from the MODIS predominant vegetation cover map as provided with the
GFEDv2 inventory (van der Werf et al., 2006). It contains a classification of the year
2000 vegetation into the major vegetation classes savanna/herbaceous vegetation,
tropical forest and extratropical forest. The emission factors for these classes were
harmonized to those given by Andreae and Merlet (2001, with updates from M. O. An-
dreae, personal communication, M. O. Andreae, 2008).

Emissions from burning of soil organic matter, notably peat soil, which is ignited by
fires in the overlying surface vegetation, may strongly influence emission production in
some boreal and tropical regions (Page et al., 2002; Kasischke et al., 2005). Therefore,
peat fires are explicitly taken into account in this new inventory. We assumed that peat
fires can contribute up to 45% to the total carbon emissions released per grid cell if
the fractional peat cover is 100%. If the fractional peat cover is lower, the relative
contribution of carbon emissions from fires in surface vegetation increases accordingly.
Note that this is an update from the original RETRO inventory. Information on the
fractional distribution of peat soils is taken from the FAO (2003) WRB Map of World
Soil Resources. The assumed maximal contribution of peat fires to the total carbon
emission production refers a lower bound estimates provided for boreal and tropical
peats (Kasischke et al. 2005; Heil, 2007). Emission factors for peat are taken from
Christian et al. (2003) and linuma et al. (2007).

A monthly seasonality has been added to the original decadal GICC dataset; it is
derived from the GFEDv2 seasonality (1997-2006) (van der Werf et al., 2006). The
GFEDv2 seasonality was also used to redistribute in space and time total carbon emis-
sions of the following regions in the attempt to improve the carbon emission patterns of
the original RETRO data: Contiguous United States, Central America, South America,
Northern Hemisphere Africa, Southern Hemisphere Africa, India, Continental South-
east Asia and Australia (for region definition; see Schultz et al., 2008). For the RETRO
region Siberia and Mongolia, the redistribution was done using combined information
from the GFEDv2 seasonality and the monthly Fire Danger Index (FDI) (described in
Schuliz et al., 2008). The yearly global total biomass burning carbon emissions of the
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original datasets remain unchanged from these corrections (deviations less than 1%
from original value), while monthly totals may differ.

Biomass burning emissions are held constant between 1850 and 1900, as no ad-
ditional information on burned area reconstructions is available (Mouillot et al., 2005).
Furthermore, ice-core and charcoal records (McConnell et al., 2007; Marlon et al.,
2008) indicate little variations during this time period. The time evolution of biomass
burning emissions for the main compounds of interest is shown in Fig. 4.

In the distributed emission dataset, no information on vertical distribution is provided.
As the separate distribution of grassland and forest fires are provided, users can apply
methods similar to Lavoué et al. (2000) (for example) if deemed necessary.

Emissions from fuelwood burning and charcoal production, sometimes also labeled
as biomass burning, are accounted for in anthropogenic residential sector emissions
(see Sect. 2).

3 Ship and aircraft emissions

Total ship emissions, including international shipping, domestic shipping and fish-
ing, but excluding military vessels, are taken from a recent assessment by Eyring et
al. (2009) to reflect updated information on the fleet and emission factors. In this latter
study, estimates of fuel consumption and CO, in the year 2000 are based on the Inter-
national Maritime Organization (IMO) study discussed in Buhaug et al. (2008), while
the best-estimate for non-CO, emission totals is derived as a mean of previous stud-
ies (Corbett and Kohler, 2003; Eyring et al., 2005; Endresen et al., 2003, 2007]. Ship
emissions are distributed over the globe using the International Comprehensive Ocean-
Atmosphere Data Set (ICOADS; Wang et al., 2007), which provides changing shipping
patterns on a monthly basis. NMVOC emissions from crude oil transport (evaporation
during loading, transport, and unloading) from Endresen et al. (2003) were added to
the gridded ICOADS ship emission dataset. Consistent with our treatment of other
anthropogenic sources, ship emission totals are spread onto the 0.5°x0.5° grid boxes
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without accounting for dispersion, chemical transformation and loss processes on the
sub-grid scale. Neglecting the plume processes in global models may lead to an over-
estimation of ozone formation (Franke et al., 2008; Charlton-Perez et al., 2009).

To extend the non-CO, ship emissions backward in time, the 2000 emission totals
from Eyring et al. (2009) are scaled with the historical CO, emission time series from
Buhaug et al. (2008) back to 1870. Emissions for 1850 and 1860 are estimated by
scaling changes in global ship tonnage as collated by Bond et al. (2007). For the his-
torical geographical ship distribution we use ICOADS data back until 1950. Prior to
1950s there was much less activity by ships on Pacific routes, with shipping concen-
trated on the North and South Atlantic oceans, Mediterranean, and Indian/Indonesian
trade routes (personal communication, J. Corbett, 2008). To map emissions before
1950, the Pacific trade routes are therefore constrained to go to zero in 1900, forcing
the emissions to be concentrated in the remaining regions. Between 1900 and 1950 a
linear interpolation between these patterns is applied to provide decadal gridded ship
emissions.

Aircraft emissions of NO, and BC are calculated using the FAST model (Lee
et al.,, 2005) for the European Quantify project (http://www.pa.op.dIr.de/quantify/).
Global scheduled and non-scheduled aircraft movements are taken from the AERO2K
database (Eyers et al., 2005) for the year 2002. Fuel consumption is calculated us-
ing the industry-standard PIANO aircraft performance model (Simos, 2004) for all the
main aircraft types including four categories of turbo-props. Fuel consumption is then
assigned to the routes using a great-circle assumption and NO, emissions calculated
with the Deutsches Zentrum fir Luft-und Raumfahrt fuel flow method (Lecht, 1999). BC
emissions are calculated using the emission factors developed from Eyers et al. (2005).
Monthly distributions were calculated and provided on a 3D grid with an original reso-
lution of 1°x1° latitude/longitude and vertical discretization of flight levels of 2000 feet,
which corresponds to the actual (pressure) levels used by air traffic. The vertical dis-
tribution of traffic was parameterized from a statistical analysis of EUROCONTROL air
traffic data that provided a relationship between mission distance, aircraft type and
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average cruise altitude (Lee et al., 2005). By convention, aviation “bottom up” in-
ventories underestimate fuel and emissions for a variety of reasons (perfect routing,
no stacking, limited data on non-scheduled traffic, military aircraft) when compared
with International Energy Agency (IEA) statistics of kerosene sales, so that the three-
dimensional inventory is scaled up to the IEA kerosene data to ensure that the global
and annual totals are the same.

Historical emissions from aviation are provided on an annual total basis. Data from
1940 to 1995 are taken from Sausen and Schumann (2000) and extended to 2000 us-
ing IEA data (the basis of the time series of Sausen and Schumann, 2000). Emissions
prior to 1940 are assumed to exponentially decay such that the emissions by 1910
are zero. This is clearly of limited importance since emissions in 1940 and before are
believed to be quite small.

4 Application

We have described above (see Figs. 2—4) how changes in emissions at the global
scale have been very significant between 1850 and 2000. It is however important to re-
member that these changes have very difference regional characteristics (Fig. 5 for the
specific case of NO, emissions) and only global three-dimensional chemistry-climate
models can fully capture the implication. Therefore, in this section, we discuss the
application of the emissions described above to the simulation of tropospheric com-
position changes between 1850 and present by two chemistry-climate models: CAM-
Chem and G-PUCCINI. Of those two models only CAM-chem includes an interactive
representation of aerosols (i.e. G-PUCCINI reads in previously generated aerosol dis-
tributions). Analysis of the modeled results against available observations provides an
initial understanding of successes and limitations of the emissions described in this

paper.
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4.1 Model description and simulation setup
411 CAM-Chem

We use the Community Atmosphere Model version 3.5 (Gent et al., 2009) modified to
include interactive chemistry (i.e. with feedback to the radiation calculation in the atmo-
sphere) to calculate distributions of gases and aerosols. The model configuration used
in this study includes a horizontal resolution of 1.9° (latitude) by 2.5° (longitude) and
26 hybrid levels, from the surface to ~40km with a timestep of 30 min; the transient
simulation was performed continuously between 1850 and 2009. In order to simulate
the evolution of the atmospheric composition over the recent past, the chemical mech-
anism used in this study is formulated to provide an accurate representation of both
tropospheric and stratospheric chemistry (Lamarque et al., 2008). Specifically, to suc-
cessfully simulate the chemistry above 100 hPa, we include a representation of strato-
spheric chemistry (including polar ozone loss associated with stratospheric clouds)
from version 3 of MOZART (MOZART-3; Kinnison et al., 2007). The tropospheric chem-
istry mechanism has a limited representation of non-methane hydrocarbon chemistry
in addition to standard methane chemistry, extended from Houweling et al. (1998) with
the inclusion of isoprene and terpene oxidation and updated to JPL-2006. This model
has a representation of aerosols based on the work by Tie et al. (2001, 2005), i.e.
sulfate aerosol is formed by the oxidation of SO, in the gas phase (by reaction with
the hydroxyl radical) and in the aqueous phase (by reaction with ozone and hydrogen
peroxide). Furthermore, the model includes a representation of ammonium nitrate that
is dependent on the amount of sulfate present in the air mass following the parame-
terization of gas/aerosol partitioning by Metzger et al. (2002). Because only the bulk
mass is calculated, a lognormal distribution is assumed for all aerosols using differ-
ent mean radius and geometric standard deviation (Liao et al., 2003). The conversion
of carbonaceous aerosols (organic and black) from hydrophobic to hydrophilic is as-
sumed to occur within a fixed 1.6 days. Natural aerosols (desert dust and sea salt)
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are implemented following Mahowald et al. (2006a and b), and the sources of these
aerosols are derived based on the model calculated wind speed and surface condi-
tions.

At the lower boundary, the time-varying (monthly values) zonal-averaged distribu-
tions of CO,, CH,, H, and all the halocarbons (CFC-11, CFC-12, CFC-113, HCFC-
22, H-1211, H-1301, CCl,, CH;CCl;, CH5Cl and CH3Br) are specified following the
datasets used in Garcia et al. (2007). In addition, the monthly-mean time-varying sea-
surface temperatures (SSTs) and sea-ice distributions are taken from a 20th century
CCSM-3 simulation (Meehl et al., 2008); as this simulation only extended from 1870
to present, the sea-surface temperature and ice extent between 1850 and 1870 are
assumed to be the same as 1870.

4.1.2 G-PUCCINI

Simulations are performed with the Goddard Institute for Space Studies (GISS) model
for Physical Understanding of Composition-Climate INteractions and Impacts (G-
PUCCINI) (Shindell et al., 2006b). Its behavior in the GISS AR4 version of the climate
model has been documented and extensively compared with observations (e.g. Den-
tener et al., 2006a; Shindell et al., 2006a, b; Stevenson et al., 2006). Tropospheric
chemistry includes basic NO,-HO,-O,-CO-CH, chemistry as well as peroxyacetylni-
trates and the hydrocarbons isoprene, alkyl nitrates, aldehydes, alkenes, and paraf-
fins. The lumped hydrocarbon family scheme was derived from the Carbon Bond
Mechanism-4 (CBM-4) and from the more extensive Regional Atmospheric Chemistry
Model (RACM), following Houweling et al. (1998). To represent stratospheric chemistry,
the model includes chlorine- and bromine-containing compounds, and CFC and N,O
source gases. The chemistry used here is quite similar to that documented previously,
with a few additions: acetone has been added to the hydrocarbons included in the
model following (Houweling et al., 1998), polar stratospheric cloud formation is now de-
pendent upon the abundance of nitric acid, water vapor and temperature (Hanson and
Mauersberger, 1988), and a reaction pathway for HO,+NO to yield HNO5; has been
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added (Butkovskaya et al., 2007). Chemical calculations are performed seamlessly
throughout the troposphere and stratosphere. The full scheme includes 156 chemical
reactions among 50 species with a time step of 20 min. Photolysis rates are calculated
using the Fast-J2 scheme (Bian and Prather, 2002), whereas other chemical reaction
rate coefficients are from JPL-2000 (Sander et al., 2000).

The chemistry model is fully embedded in the GISS modelE climate model (Schmidt
et al.,, 2006). For the simulations described here, we have used the development
version of the model near its “frozen” state for AR5 simulations. This version of the
model has an equilibrium climate sensitivity of 3.7 °C for a doubling of CO,. The model
was run at 2° latitude by 2.5° longitude Cartesian horizontal resolution, with increased
effective resolution for tracers by carrying higher order moments at each grid box.
This configuration had 40 vertical hybrid sigma layers from the surface to 0.01 hPa
(~80km). Tracer transport uses a non-diffusive quadratic upstream scheme (Prather,
1986). Time-slice simulations were performed every 20 years during the 1850-1930
time period, and every 10 years from 1930-2000. Values were then interpolated to give
decadal means. Simulations were carried out for 8 years, with the average of the last
five used for analysis. The GCM was driven by observed decadal mean sea-surface
temperatures and sea-ice distribution (Rayner et al., 2003) and prescribed abundances
of long-lived greenhouse gases.

4.2 Evaluation of model results

In this section, we focus our evaluation to long-term trends in surface and mid-
troposphere ozone (both models), surface concentration of carbon monoxide (both
models) and aerosol optical depth and aerosol deposition (CAM-chem only); indeed,
the main purpose for the emission dataset described above is to be used for studies of
long-term changes in tropospheric composition of relevance to climate radiative forc-
ing. Note that both model simulations use constant 2000 emissions after year 2000 (up
to 2009). Emissions beyond year 2000 will be discussed elsewhere (van Vuuren et al.,
2010).
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4.21 Surface ozone

Observations of surface ozone over the last decades indicate a significant rise in the
Northern Hemisphere (Parrish et al., 2004; Oltmans et al., 2006; Derwent et al., 2007).
We focus here on stations with at least 20 years of observations (Table 5), providing
timeseries for comparison with model results. Model ozone fields are interpolated to
the location of the observations, including altitude. Because the observations over the
United States Pacific coast (see Table 5) are filtered to only provide background condi-
tions (Parrish et al., 2004), the analysis of the model results is performed using surface
ozone from approximately 200 km west of the actual station location. In addition, in the
case of Mace Head, background (Derwent et al., 2007) and unfiltered surface ozone
(from http://tarantula.nilu.no/projects/ccc/emepdata.html) observations are available; in
this case, we use the unfiltered data, as they are more representative of the modeled
field.

Over the European sites (Fig. 6, top), both models (with small inter-model differ-
ence) provide a good representation of present-day observed surface ozone, except at
Arkona where G-PUCCINI tends to overpredict the observed concentration by approx-
imately 8 ppbv.

Going back in time, until 1990, the model results and the observations agree quite
well with each other, indicating that the recent trends in emissions are probably well
captured for the this region. Prior to 1990, the observations tend to decrease sub-
stantially faster (approximately twice as fast) than the models simulate. In particular,
observations in Arkona during the mid-1980s show very low values (less than 10 ppbv).
Without any indication of problem with the observations, it is clear that the models are
not able to represent such distribution. A possible explanation is that highly localized
emission patterns not captured by our emission dataset could have led to those very
low ozone concentrations. The overall agreement between the two models in the sim-
ulated long-term tendencies (Fig. 6) indicate that the smaller-than-observed modeled
trend prior to 1990 is most likely due to a limitation of our emission datasets.
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Over the US Pacific Coast, the models are again similar to one another, but nei-
ther matches the rapid increase in surface ozone seen in observations in recent years
(Parrish et al., 2004). This is perhaps not surprising as emissions changes were only
determined until 2000.

However, additional long-term records of surface ozone (Barrow, Alaska; Mauna Loa,
Hawaii; Cape Matatula, American Samoa; South Pole, Antarctica, Fig. 7) show a dif-
ferent picture, in which changes in ozone in the 1980s are not increasing as rapidly,
if at all. In particular, the record at Samoa actually indicates a long-term decrease
in ozone, contrary to the findings of Lelieved et al. (2004). In all those places, both
models perform quite well in their capture of the long-term trends (note that, for vi-
sualization purposes, a constant bias of 6 ppbv was added to the observed record at
Barrow to match the simulated levels; this is likely due to the specific environment at
Barrow, at the edge of the Arctic Ocean, which is difficult to capture with a coarse-grid
global model). At Samoa, climate trends may have played a substantial role in the ap-
parent decrease between ~1990 and ~2000 in the observations, as the models have
rather different trends despite the same emissions data. The use of observed SSTs in
the G-PUCCINI simulations may have allowed it to capture local climate changes that
could have contributed to the recent ozone decline seen in that remote Western Pacific
location. At the South Pole, there is indication of the impact of stratospheric ozone de-
pletion, bringing minimal levels during the mid-1990s, followed by a slight recovery and
leveling-off since 2000 (Chipperfield et al., 2007). CAM-chem is able to capture this
trend, while G-PUCCINI tends to underestimate ozone in 2000, apparently due to an
overestimate of downward transport of air having experienced Antarctic stratospheric
ozone depletion (unlike the surface, stratospheric ozone did not recover to the values
seen in the 1970s and early 1980s by 2000; Chipperfield et al., 2007).

4.2.2 Surface carbon monoxide

Comparison (Fig. 8) of modeled and observed (averaged 1990s conditions) surface
carbon monoxide at Mace Head (a useful comparison since this station also provides
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surface ozone, Fig. 6) indicates a negative bias (approximately 20 ppbv) and a re-
duced seasonal cycle, with a larger negative bias during winter. These features are
present in both simulations and are found at most of the Northern Hemisphere sta-
tions (not shown); agreement during summer conditions seems to always be slightly
better than in the winter. Biases in the Southern Hemisphere are much smaller (es-
pecially for CAM-chem, not shown). The overall Northern Hemisphere negative bias
in both model simulations indicates that the overall emissions of carbon monoxide
(and possibly NMVOCs) are underestimated in this bottom-up inventory; this under-
estimation is likely in the anthropogenic emissions as this bias is present year-round.
However, owing to the long lifetime of carbon monoxide during winter (up to a few
months; Edwards et al., 2005), it is also possible that biomass burning emissions in
the latter part of the year over Russia are not well enough characterized to provide
the wintertime maximum (Edwards et al., 2005). Underestimation of CO emissions
could also be caused by the underestimation of fuelwood combustion (activity data
problem) or an overestimation of combustion technologies (too high combustion effi-
ciency). However, further analysis (beyond the scope of this paper) is required to fully
understand the reason for this low bias. The long-term change (between 1990 and
present, Fig. 9) in carbon monoxide at Mace Head (using unfiltered observations, see
http://tarantula.nilu.no/projects/ccc/emepdata.html) shows that the models capture the
recent change relatively well; it is clear however that this analysis suffers from the lack
of long-term (>30 years) records. Interestingly, the simulated change in surface CO at
Mace Head between 1960 and 1990 is quite different between the two models, contrary
to very similar ozone change over the same period.

The lifetimes of CO and CH, can be used as global measure of the OH content of the
atmosphere. For the 2000 conditions, the methane chemical lifetime (i.e. not including
the small deposition flux as the simulations were performed with specified bottom layer
methane concentration) is 8.9 years for CAM-chem and 8.6 years for G-PUCCINI, in
excellent agreement with the IPCC AR-4 estimates of 8.7+1.3 years (Denman and
Brasseur, 2007). For the same period, the CO lifetime is 1.7 months for CAM-chem,
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in good agreement with Horowitz et al. (2002). There is therefore no indication that a
significant bias in OH in these models could explain the low bias in CO.

4.2.3 Mid- and upper-tropospheric ozone

A compilation of mid-tropospheric ozone observations from a variety of platforms
(Cooper et al., 2010) indicates that Western United North America (25°-55° N, 130°—
90° W, 3-8 km) has experienced a recent (1995-2008) increase in ozone concentration
(Fig. 10), most likely associated with Asian emissions. The model results indicate again
that they are performing very well in estimating the present-day (2000) ozone concen-
tration. Evidently, they are not able to reproduce inter-annual variability but our 5- to 10-
yr averages are very close to the observed values. Similarly to Fig. 6, the two models
exhibit a very consistent long-term evolution. The post-2000 observations are showing
a rapid increase that the models, owing to their use of constant 2000 emissions, are
not capturing. Furthermore, the (limited) 1984 dataset provides a much lower ozone
concentration than the models indicate, similar to the surface ozone analysis above.

4.2.4 Aerosol optical depth, burden and lifetime

A useful measure of the radiative impact of aerosols can be evaluated through the cal-
culation of the aerosol optical depth (Schulz et al., 2006). We display in Fig. 11 the
CAM-chem simulated annual average total aerosol optical depth (AOD) at 550 nm for
1850 and 2000. The occurrence of widespread pollution over the Northern Hemisphere
is clearly identifiable, while the natural contributions of dust, sea-salt and background
sulfate (from dimethylsulfide oxidation and sulfur dioxide non-eruptive volcanic emis-
sions, as both are kept constant during the simulations) are unchanged. In terms of
the global average, the 2000 AOD simulated value is 0.12, which represents an in-
crease of 0.033 over the 1850 conditions (0.087). This anthropogenic increase is very
much in agreement with the average AEROCOM results (Schulz et al., 2006). We
also compare our annual average aerosol optical depths to AERONET sun photometer
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site data at 173 sites globally (Holben, et al., 1998). Sun photometry data represents
some of the highest quality data for assessing total aerosol optical depth. We include
all stations where monthly averages at 500 nm were available for all 12 months. The
model able to capture much of the variability, but underestimates the aerosols optical
depth at high observed values (Fig. 12). The correlation coefficient between modeled
values and observations is 0.67. In terms of dust and sea-salt aerosols, comparison
with surface observations (using iron deposition as a proxy, see Fig. 13) indicates a
reasonable representation of present-day conditions.

An additional important evaluation for aerosol is their global burden and lifetime. Re-
sults for the 2000 conditions are summarized in Table 6. Compared to the AEROCOM
results (Schulz et al., 2006), the lifetime of carbonaceous aerosols is approximately
2 days shorter (from approximately 7.5 days to 5.5 days), leading to a smaller burden.
On the other hand, sulfate lifetime is almost exactly the same, as is the anthropogenic
contribution (i.e. the difference between 2000 and 1850 burdens).

4.2.5 Aerosol ice-core deposition

Ice core measurement of aerosol and gas content can provide information on long-
term changes in deposition and concentration. In particular, Greenland ice cores have
been recently used to study the importance of black carbon in the Arctic (McConnell et
al., 2007). The model results (wet and dry deposition of sulfate) are interpolated to the
model grid point nearest to the D4 ice core site (71.4° N, 44° W) with the closest model
topography altitude to D4 (approx. 100 km north of the actual D4 location); indeed,
precipitation patterns (and therefore deposition) exhibit a strongly decreasing latitudinal
gradient across the Greenland ice sheet. There is a remarkable agreement (Fig. 14,
top) between the observations and the simulated deposition. In terms of sulfate, the
maximum deposition rate (40 mg/mz/year in the observations) occurs in 1980, when the
global emissions (but especially over the United States and Russia) peaked (Fig. 3).
There is also indication of a local maximum sulfate deposition at the beginning of the
20th century in both the observations and the model field.
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Similarly (Fig. 14, bottom), black carbon (hydrophilic only) deposition at D4 has
peaked in the early part of the 20th century. We find that, using the same sampling pro-
cedure as for sulfate, the model captures that feature quite well (albeit not as strongly
as the observations suggest), along with the overall changes over the simulated pe-
riod. This is again indicative of adequate regional emission changes in North America
as Greenland deposition is most strongly influenced by emissions in that region (Shin-
dell et al., 2008), in this case related to changes (in both anthropogenic emissions
increasing, see Fig. 3) and biomass burning (decreasing, see Fig. 4).

5 Discussion and conclusions

We have presented in this paper a new set of historical anthropogenic (defined here
as originating from industrial, domestic and agriculture activity sectors) and biomass
burning emissions of reactive gases and aerosols covering 1850-2000. This dataset
is the result of a large (and first of its kind) community effort to bring together exper-
tise from various sectors and existing inventories; as such, it builds upon and com-
plements previous inventories. Our dataset represents a combination of existing re-
gional and global inventories, and the combination of information was performed on
a regional (40 regions) and sectoral (13 sectors) representation. Some detailed in-
ventories were not included as they had a limited scope (e.g. national inventories
for single or limited number of compounds or sectors). Furthermore, the use of
a variety of inventories precludes full consistency between carbon dioxide, reactive
gases and aerosol emissions for anthropogenic, biomass burning, land-use and nat-
ural emissions. It is unclear how important this lack of full consistency is, but it will
be important to focus on this issue in future similar emission datasets. Finally, no
emission uncertainty is provided; based on the recent studies by Bond et al. (2004,
2007) and Smith et al. (2010; S. J. Smith, J. van Aardenne, Z. Klimont, R. Andres,
A. Volke and S. Delgado Arias, “Historical Sulfur Dioxide Emissions: 1850-2005”,
2010), it can be expected to be large (a factor of 2 or larger) for some compounds and
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regions. All data are publicly available at http://www.iiasa.ac.at/web-apps/tnt/RcpDb
and ftp://ftp-ipcc.fz-juelich.de/pub/emissions/.

The primary purpose of this inventory is to provide emissions for chemistry-climate
simulations (with the Climate Model Intercomparison Program #5 in support of the
IPCC AR5 as the overall focus) for the study of long-term changes in atmospheric
composition. In particular, the emissions for year 2000 serve as an anchor point for
historical emissions (as discussed in this paper) and future emissions (as discussed in
van Vuuren et al., 2010). This ensures continuity in emission datasets throughout the
IPCC period of interest (1850-2100). Because of its focus on long-term changes, this
dataset provides emissions every 10 years and does not attempt to reproduce interan-
nual variability, which can be significant, particularly for biomass burning emissions.

Using two chemistry-climate models, we have performed 1850-2009 simulations
(transient or time-slice experiments) in order to provide a first-order evaluation of the
emissions. The focus of this evaluation is on long-term changes of tropospheric species
relevant to climate forcing. In particular, we find that the model simulations for the
1990-2000 conditions represent quite well the observed surface and mid-troposphere
ozone distributions. There is however indication that the modeled long-term increase
since the early 1980s is not as strong and rapid as recent publications indicate (Parrish
et al., 2004; Cooper et al., 2010). On the other hand, comparison with other long-term
ozone records (Barrow, Mauna Loa, Samoa and South Pole) shows good agreement
for the available period 1970-2000; there is therefore clearly a need for understand-
ing ozone changes at the regional scale. We found that carbon monoxide is biased
low in both models; the reason for this bias (present in many sites over the Northern
Hemisphere but not so much in the Southern Hemisphere) is not clear at this point.

Ice-core deposition of sulfate and black carbon over Greenland is well simulated
(albeit only the CAM-chem model has simulated aerosols) in both amplitude and long-
term trend. In particular, the black carbon maximum at the turn of the 20th century
is a combination of increasing anthropogenic and decreasing biomass burning emis-
sions. In addition, global measures of aerosol content are inline with the AEROCOM
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estimates for present-day burden and lifetime, especially for sulfate. Finally, aerosol
optical depth comparison with AERONET observations indicates a reasonably good
simulation of present-day conditions.

The observations of long-term changes in atmospheric composition clearly indicate
large regional variations. As discussed in our paper, modeling these changes is a
difficult challenge that combines the role of changing emissions and changing climate;
but it is the key to our understanding of future air quality (Dentener et al., 2006b).
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Table 1. List of multi-decadal inventories used in this study. emissions
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Table 2. List of regions.

Region number

Name of Region

©oONOOOTA~WN =

Canada

USA

Mexico

Rest of Central America
Brazil

Venezuela

Argentina

Rest of South America
Northern Africa

Western Africa

Eastern Africa

Rest of Southern Africa
South Africa

France

Germany

Italy

UK

Rest of Western Europe
Rest of Central Europe
Baltic States (Estonia, Latvia, Lithuania)
Turkey

Ukraine

Asia-Stan

Russia

Middle East

India

Rest of South Asia

South Korea (Republic of Korea)
North Korea (Democratic People’s Republic of Korea)
China

Taiwan

Thailand

Rest of Southeastern Asia
Indonesia

Japan

Australia

New Zealand

Rest of Oceania
Greenland

Antarctica
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Table 3. List of sectors.
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10, 4963-5019, 2010

Sector number

Sector name

TR0 NO O RN

Energy production and distribution
Industry (combustion and non-combustion)
Land transport

Maritime transport

Aviation

Residential and commercial

Solvents

Agriculture

Agricultural waste burning on fields

Waste

Open vegetation fires in forests

Open vegetation fires in savanna and grasslands
Natural emissions
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Table 4. NMVOC speciation.
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name molecular weight comments

alcohols 46.2 assumed C,H;0H

ethane 30.0

propane 44.0

butanes 57.8

pentanes 72.0

hexanes and higher 106.8

ethene 28.0

propene 42.0

ethyne 26.0

other alkenes and alkynes 67.0

benzene 78.0

toluene 92.0

xylene 106.0

trimethyl benzenes 120.0

other aromatics 126.8

esters 104.7 surrogate species = CH;C(O)O(CH,)nCH;

ethers 81.5 surrogate species = CH;CH,O(CH,)nCH4

chlorinates HC 138.8

methanal (CH,O) 30.0

other alkanals 68.8

ketones 75.3

acids 59.1

other VOC 68.9 use median C ratio of other compounds
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Table 5. List of stations.
J.-F. Lamarque et al.

Station name Latitude Longitude Altitude (m) Period

Arkona/Zingst 54.4N 13.26 E 42 Sep 1956—-Jun 2004

Barrow 71.32N 156.6 W 11 Mar 1973-Dec 2005 _
Cape Matatula 14.24S 170.57W 42 Sep 1975-Dec 2004

Hohenpreissenberg 47.89N 11.02E 985 Jan 1995-Dec 2007 ! !
Mace Head 53.33N  9.9W 25 Nov 1987-Sep 2006 ! !
Maunao Loa 16.54N 155.58W 3397 Sep 1973-Dec 2004

South Pole 89.90S  24.8W 2810 Jan 1975-Dec 2004 | Tebles  Figures
US Pacific Coast N/A N/A N/A Mar 1988-Feb 2007

Zugspitze 47.42N 10.98E 2960 Jan 1995-Dec 2002 ! !
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Table 6. Global burden and lifetime for anthropogenically-perturbed aerosols in 1850 and 2000
for the CAM-chem simulation.

Sulfate

Burden (mg(SO,)/m?)
Lifetime (days)

Black carbon

Burden (mg(C)/m?)
Lifetime (days)

Organic carbon

Burden (mg(C)/m?)
Lifetime (days)

1850 2000
1.55 3.65
3.4 3.6
0.09 0.24
5.6 5.8
0.64 1.04
5.2 5.4
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Fig. 1. Time evolution of the United States CO transportation sector emissions. Left
panel is scaling with respect to 2000 (dimensionless). Right panel shows actual emissions
(Tg(CO)/year).

5006

00



600 -

Tg(CO)/year
L) w >
(=3 (=} o
o o o
1 1 1

100 4

500 This worV\

T T T T T
1860 1890 1920 1950 1980
Year

Fig. 2. Time evolution of the total (sum of all sectors but agricultural waste burning)
land anthropogenic emissions for CO (Tg(CO)/year), NO, (Tg(NO,)/year) and total NMVOC

(Tg(NMVOC)/year).
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Fig. 3. Time evolution of the total (sum of all sectors) land anthropogenic emissions for
black carbon (Tg(C)/year), organic carbon (Tg(C)/year), ammonia (Tg(NHg)/year), sulfur diox-
ide (Tg(SO,)/year), and methane (Tg(CH,)/year).
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Fig. 4. Time evolution of the total open biomass burning (forest and grassland) emissions
for carbon monoxide (Tg(CO)/year), NO, (Tg(NO,)/year), NMVOC (Tg(NMVOC)/year, black
carbon (Tg(C)/year) and organic carbon (Tg(C)/year).
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Fig. 5. Total annual emissions (anthropogenic, shipping and biomass burning) of NO,
(Tg(N)/year) for 1850 (top left), 1900 (top right), 1950 (bottom left) and 2000 (bottom right).
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Fig. 6. Time evolution (1960-2009) of surface ozone (12-month running mean) at a variety
of sites. Observations are in red, CAM-chem results are in black (solid line) and G-PUCCINI
results are in black (solid squares). Note the emissions beyond 2000 are kept at their 2000
level.
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Fig. 7. Time evolution (1970-2009) of surface ozone (12-month running mean) at a variety
of sites. Observations are in red, CAM-chem results are in black (solid line) and G-PUCCINI
results are in black (solid squares). Note the emissions beyond 2000 are kept at their 2000
level. A constant value of 6 ppbv was added to the Barrow observations to take into account

model deficiencies; this is shown as green dots.
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Fig. 8. Seasonal cycle of carbon monoxide (ppbv) at Mace Head for the 1990s. Observations
(averaged 1991-1999) are in red, CAM-chem results are in black (solid line) and G-PUCCINI

results are in black (solid squares).
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Fig. 9. Time evolution (1960-2009) of surface CO (12-month running mean) at Mace Head.
Observations are in red, CAM-chem results are in black (solid line) and GPUCCINI results
are in black (solid squares). Note the emissions beyond 2000 are kept at their 2000 level. A
constant value of 25 ppbv was subtracted from the observations to take into account model
deficiencies; this is shown as green dots.
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Fig. 10. Time evolution (1970-2009) of mid-troposphere ozone (springtime mean) from Cooper
et al. (2010). Observations are in red, CAM-chem results are in black (solid line) and G-
PUCCINI results are in black (solid squares). Note the emissions beyond 2000 are kept at
their 2000 level.

5015

ACPD
10, 4963-5019, 2010

1850-2000 gridded
anthropogenic and
biomass burning
emissions

J.-F. Lamarque et al.

00



90N

60N

30N

308

60S

908

90N

60N

30N

0

308

60S

90S

Fig. 11. Total (natural and anthropogenic) CAM-chem simulated aerosol optical depth at

180 150W 120W 90W

60W

30W 0

30E

60E

90E

120E  150E

180

180 150W 120W 90W

0.1

0.2

60W

0.3

30W 0

0.4

550 nm (decadal average) for 1850 and 2000.

5016

0.5

60E

0.6

90E

0.7

120E  150E

0.8

180

ACPD
10, 4963-5019, 2010

1850-2000 gridded
anthropogenic and
biomass burning
emissions

J.-F. Lamarque et al.




0.0 0.2 0.4 0.6 0.8 1.0
0.60 i | 1 I | I I ] I ]
0.50 i
= E i
2 0.40 ,
% a0 ] : :
— 0.30 o, o® ® . -
i 4
% 1 ® .o B
i o |
Eoz20d °TeM V. e 0, '
.- . LS e o ® -
m : [ ] o L] ~. ° B
0.10 4° '."..:."- LA N
i ° Y ~
] e .o.’. :‘ ...o ee :
0.00 1 tEr T T [ T

0.00 0.10 0.20 0.30 0.40 0.50 0.60

Fig. 12. Comparison between observed and modeled (present-day) annually aerosol optical
depth at 500nm. The observed values are based on annually averaged AERONET optical

depths (Holben et al., 1998).
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Fig. 13. Comparison between observed and modeled (present-day) iron concentration at a va-
riety of sites (g/m?/year). The compiled observations are available from Mahowald, et al. (2009).
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Sulfate deposition (mg/m2/year)

Fig. 14. Deposition (annual average) over Greenland (D4 site) of sulfate and black carbon.
Ice-core observations are in red and CAM-chem results are in black.
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