000908502 001__ 908502
000908502 005__ 20230310131347.0
000908502 0247_ $$2doi$$a10.1038/s41567-022-01638-4
000908502 0247_ $$2ISSN$$a1745-2473
000908502 0247_ $$2ISSN$$a1745-2481
000908502 0247_ $$2Handle$$a2128/31716
000908502 0247_ $$2WOS$$aWOS:000814946000001
000908502 037__ $$aFZJ-2022-02638
000908502 041__ $$aEnglish
000908502 082__ $$a530
000908502 1001_ $$0P:(DE-Juel1)165965$$aZheng, Fengshan$$b0$$eCorresponding author$$ufzj
000908502 245__ $$aSkyrmion–antiskyrmion pair creation and annihilation in a cubic chiral magnet
000908502 260__ $$aBasingstoke$$bNature Publishing Group$$c2022
000908502 3367_ $$2DRIVER$$aarticle
000908502 3367_ $$2DataCite$$aOutput Types/Journal article
000908502 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1661318800_27783
000908502 3367_ $$2BibTeX$$aARTICLE
000908502 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908502 3367_ $$00$$2EndNote$$aJournal Article
000908502 520__ $$aA fundamental property of particles and antiparticles (such as electrons and positrons, respectively) is their ability to annihilate one another. A similar behaviour is predicted for magnetic solitons1—localized spin textures that can be distinguished by their topological index Q. Theoretically, magnetic topological solitons with opposite values of Q, such as skyrmions2 and their antiparticles (namely, antiskyrmions), are expected to be able to continuously merge and annihilate3. However, experimental verification of such particle–antiparticle pair production and annihilation processes has been lacking. Here we report the creation and annihilation of skyrmion–antiskyrmion pairs in an exceptionally thin film of the cubic chiral magnet of B20-type FeGe observed using transmission electron microscopy. Our observations are highly reproducible and are fully consistent with micromagnetic simulations. Our findings provide a new platform for the fundamental studies of particles and antiparticles based on magnetic solids and open new perspectives for practical applications of thin films of isotropic chiral magnets.
000908502 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000908502 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x1
000908502 536__ $$0G:(EU-Grant)856538$$a3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)$$c856538$$fERC-2019-SyG$$x2
000908502 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x3
000908502 536__ $$0G:(EU-Grant)766970$$aQ-SORT - QUANTUM SORTER (766970)$$c766970$$fH2020-FETOPEN-1-2016-2017$$x4
000908502 536__ $$0G:(GEPRIS)405553726$$aDFG project 405553726 - TRR 270: Hysterese-Design magnetischer Materialien für effiziente Energieumwandlung (405553726)$$c405553726$$x5
000908502 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908502 7001_ $$0P:(DE-Juel1)145390$$aKiselev, Nikolai$$b1$$eCorresponding author$$ufzj
000908502 7001_ $$0P:(DE-Juel1)180548$$aYang, Luyan$$b2$$ufzj
000908502 7001_ $$0P:(DE-Juel1)176480$$aKuchkin, Vladyslav M.$$b3$$ufzj
000908502 7001_ $$00000-0002-3577-7966$$aRybakov, Filipp N.$$b4
000908502 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b5$$ufzj
000908502 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b6
000908502 773__ $$0PERI:(DE-600)2206346-8$$a10.1038/s41567-022-01638-4$$p863-868$$tNature physics$$v18$$x1745-2473$$y2022
000908502 8564_ $$uhttps://juser.fz-juelich.de/record/908502/files/Skyrmion.pdf$$yOpenAccess
000908502 8564_ $$uhttps://juser.fz-juelich.de/record/908502/files/s41567-022-01638-4.pdf$$yOpenAccess
000908502 8767_ $$d2022-08-15$$eHybrid-OA$$jPublish and Read
000908502 909CO $$ooai:juser.fz-juelich.de:908502$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire$$qOpenAPC$$qOpenAPC_DEAL
000908502 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165965$$aForschungszentrum Jülich$$b0$$kFZJ
000908502 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145390$$aForschungszentrum Jülich$$b1$$kFZJ
000908502 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180548$$aForschungszentrum Jülich$$b2$$kFZJ
000908502 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176480$$aForschungszentrum Jülich$$b3$$kFZJ
000908502 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b5$$kFZJ
000908502 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b6$$kFZJ
000908502 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000908502 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x1
000908502 9141_ $$y2022
000908502 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000908502 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000908502 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000908502 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000908502 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-12$$wger
000908502 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PHYS : 2021$$d2022-11-12
000908502 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000908502 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000908502 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000908502 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000908502 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000908502 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000908502 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-12
000908502 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT PHYS : 2021$$d2022-11-12
000908502 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000908502 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000908502 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000908502 915pc $$0PC:(DE-HGF)0114$$2APC$$aGerman academic consortium, administered by Max Planck Digital Library: Springer Nature 2021
000908502 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000908502 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000908502 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000908502 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000908502 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x4
000908502 9801_ $$aFullTexts
000908502 980__ $$ajournal
000908502 980__ $$aVDB
000908502 980__ $$aUNRESTRICTED
000908502 980__ $$aI:(DE-Juel1)IAS-1-20090406
000908502 980__ $$aI:(DE-Juel1)PGI-1-20110106
000908502 980__ $$aI:(DE-82)080009_20140620
000908502 980__ $$aI:(DE-82)080012_20140620
000908502 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000908502 980__ $$aAPC