000908553 001__ 908553
000908553 005__ 20240529111752.0
000908553 0247_ $$2doi$$a10.1063/5.0089874
000908553 0247_ $$2ISSN$$a0021-9606
000908553 0247_ $$2ISSN$$a1089-7690
000908553 0247_ $$2ISSN$$a1520-9032
000908553 0247_ $$2Handle$$a2128/31498
000908553 0247_ $$2pmid$$a35490007
000908553 0247_ $$2WOS$$aWOS:000818945100017
000908553 037__ $$aFZJ-2022-02677
000908553 082__ $$a530
000908553 1001_ $$0P:(DE-Juel1)180820$$aSharma, Aakash$$b0$$eCorresponding author$$ufzj
000908553 245__ $$aQuasielastic neutron scattering reveals the temperature dependent rotational dynamics of densely grafted oleic acid
000908553 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2022
000908553 3367_ $$2DRIVER$$aarticle
000908553 3367_ $$2DataCite$$aOutput Types/Journal article
000908553 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1658922504_11504
000908553 3367_ $$2BibTeX$$aARTICLE
000908553 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000908553 3367_ $$00$$2EndNote$$aJournal Article
000908553 520__ $$aWe study the dynamics of pure oleic acid and grafted oleic acid synthesized by decomposing iron oleate into oleic acid grafted iron oxide nanoparticles. Our quasielastic neutron scattering study shows that oleic acid dominantly performs translational diffusion at room temperature. On the other hand, in nanocomposites, constraints imposed by grafting and crowding of neighboring chains restrict the grafted oleic acid to uniaxial rotation. Interestingly, it also manifests mobility in grafted oleic acid below the crystallization temperature of pure oleic acid. The data from grafted oleic acid could be effectively described using a uniaxial rotational diffusion model with an additional elastic scattering contribution. This kind of elastic scattering arises due to the restricted bond mobility and increases with decreasing temperature. The radius of rotation obtained from the fitted data agrees very well with the geometry of the molecule and grafting density. These results open possibilities of research on the confined surfactant systems, which could be analyzed using the approach described here
000908553 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
000908553 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
000908553 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000908553 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000908553 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0
000908553 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eSPHERES: Backscattering spectrometer$$fNL6S$$x0
000908553 7001_ $$0P:(DE-Juel1)130777$$aKruteva, Margarita$$b1$$eCorresponding author
000908553 7001_ $$0P:(DE-Juel1)131056$$aZamponi, Michaela$$b2$$ufzj
000908553 7001_ $$0P:(DE-Juel1)172686$$aEhlert, Sascha$$b3$$ufzj
000908553 7001_ $$0P:(DE-Juel1)130917$$aRichter, Dieter$$b4
000908553 7001_ $$0P:(DE-Juel1)172658$$aFörster, Stephan$$b5
000908553 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/5.0089874$$gVol. 156, no. 16, p. 164908 -$$n16$$p164908 -$$tThe journal of chemical physics$$v156$$x0021-9606$$y2022
000908553 8564_ $$uhttps://juser.fz-juelich.de/record/908553/files/5.0089874.pdf$$yPublished on 2022-04-28. Available in OpenAccess from 2023-04-28.
000908553 8564_ $$uhttps://juser.fz-juelich.de/record/908553/files/zamponi_quasielastic_neutron_Manuscript_JCP.pdf$$yPublished on 2022-04-28. Available in OpenAccess from 2023-04-28.
000908553 8564_ $$uhttps://juser.fz-juelich.de/record/908553/files/zamponi_quasielastic_neutron_SM%20Aakash_Sharma%202022_JCP.pdf$$yPublished on 2022-04-28. Available in OpenAccess from 2023-04-28.
000908553 909CO $$ooai:juser.fz-juelich.de:908553$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000908553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180820$$aForschungszentrum Jülich$$b0$$kFZJ
000908553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130777$$aForschungszentrum Jülich$$b1$$kFZJ
000908553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131056$$aForschungszentrum Jülich$$b2$$kFZJ
000908553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172686$$aForschungszentrum Jülich$$b3$$kFZJ
000908553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130917$$aForschungszentrum Jülich$$b4$$kFZJ
000908553 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172658$$aForschungszentrum Jülich$$b5$$kFZJ
000908553 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
000908553 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lFrom Matter to Materials and Life$$vMaterials – Quantum, Complex and Functional Materials$$x1
000908553 9141_ $$y2022
000908553 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000908553 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000908553 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000908553 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-25$$wger
000908553 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-25
000908553 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-25
000908553 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-25
000908553 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-25
000908553 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-25
000908553 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM PHYS : 2021$$d2022-11-25
000908553 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-25
000908553 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-25
000908553 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-25
000908553 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000908553 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
000908553 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x2
000908553 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x3
000908553 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x4
000908553 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x5
000908553 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x6
000908553 9801_ $$aFullTexts
000908553 980__ $$ajournal
000908553 980__ $$aVDB
000908553 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000908553 980__ $$aI:(DE-588b)4597118-3
000908553 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000908553 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000908553 980__ $$aI:(DE-Juel1)JCNS-4-20201012
000908553 980__ $$aI:(DE-Juel1)PGI-4-20110106
000908553 980__ $$aI:(DE-82)080009_20140620
000908553 980__ $$aUNRESTRICTED
000908553 981__ $$aI:(DE-Juel1)JCNS-2-20110106